Construction of Aggregation Operators With Noble Reinforcement

This paper examines disjunctive aggregation operators used in various recommender systems. A specific requirement in these systems is the property of noble reinforcement: allowing a collection of high-valued arguments to reinforce each other while avoiding reinforcement of low-valued arguments. We present a new construction of Lipschitz-continuous aggregation operators with noble reinforcement property and its refinements.

[1]  Gleb Beliakov,et al.  Fitting triangular norms to empirical data , 2005 .

[2]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[3]  Henryk Wozniakowski,et al.  A general theory of optimal algorithms , 1980, ACM monograph series.

[4]  Radko Mesiar,et al.  Fitting Generated Aggregation Operators To Empirical Data , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  Ronald R. Yager Noble reinforcement in disjunctive aggregation operators , 2003, IEEE Trans. Fuzzy Syst..

[6]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[7]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[8]  Gleb Beliakov,et al.  Pointwise Construction of Lipschitz Aggregation Operators with Specific Properties , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[9]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[10]  Michel Grabisch The Choquet integral as a linear interpolator , 2004 .

[11]  Gleb Beliakov,et al.  How to build aggregation operators from data , 2003, Int. J. Intell. Syst..

[12]  R. Mesiar,et al.  Triangular norms: Basic notions and properties , 2005 .

[13]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[14]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Gleb Beliakov,et al.  Learning Weights in the Generalized OWA Operators , 2005, Fuzzy Optim. Decis. Mak..

[17]  Dimitar Filev,et al.  On the issue of obtaining OWA operator weights , 1998, Fuzzy Sets Syst..

[18]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[19]  Elena García Barriocanal,et al.  Choquet integral-based aggregation of interface usability parameters: identification of fuzzy measure , 2004 .

[20]  Radko Mesiar,et al.  Stability of aggregation operators , 2001, EUSFLAT Conf..

[21]  Gleb Beliakov,et al.  Monotonicity Preserving Approximation of Multivariate Scattered Data , 2005 .