Symbolic Partition Refinement with Dynamic Balancing of Time and Space

Bisimulation minimization is one of the classical means to fight the infamous state space explosion problem in verification. Particularly in stochastic verification, numerical algorithms are applied, which do not scale beyond systems of moderate size. To alleviate this problem, symbolic bisimulation minimization has been used effectively to reduce very large symbolically represented state spaces to moderate size explicit representations. But even this minimization may fail due to time or memory limitations. This paper presents a symbolic algorithm which relies on a hybrid symbolic partition representation. It dynamically converts between two known representations in order to provide a trade-off between memory consumption and runtime. The conversion itself is logarithmic in the partition size. We show how to apply it for the minimization of Markov chains, but the same techniques can be adapted in a straightforward way to other models like labeled transition systems or interactive Markov chains.

[1]  Oded Maler,et al.  On the Representation of Probabilities over Structured Domains , 1999, CAV.

[2]  Sarma B. K. Vrudhula,et al.  Formal Verification Using Edge-Valued Binary Decision Diagrams , 1996, IEEE Trans. Computers.

[3]  Bernd Becker,et al.  Compositional Dependability Evaluation for STATEMATE , 2009, IEEE Transactions on Software Engineering.

[4]  G. Ciardo,et al.  ON THE USE OF KRONECKER OPERATORS FOR THE SOLUTION OF GENERALIZED STOCHASTIC PETRI NETS , 1996 .

[5]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[6]  Simona Orzan,et al.  Distributed State Space Minimization , 2003, Electron. Notes Theor. Comput. Sci..

[7]  Matthias Kuntz,et al.  Symbolic Performance and Dependability Evaluation with the Tool CASPA , 2004, FORTE Workshops.

[8]  David Anthony Parker,et al.  Implementation of symbolic model checking for probabilistic systems , 2003 .

[9]  Robert de Simone,et al.  Symbolic Bisimulation Minimisation , 1992, CAV.

[10]  Enrico Macii,et al.  Algebric Decision Diagrams and Their Applications , 1997, ICCAD '93.

[11]  Bernd Becker,et al.  Sigref- A Symbolic Bisimulation Tool Box , 2006, ATVA.

[12]  Gianfranco Ciardo,et al.  A data structure for the efficient Kronecker solution of GSPNs , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[13]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[14]  Kathi Fisler,et al.  Bisimulation Minimization and Symbolic Model Checking , 2002, Formal Methods Syst. Des..

[15]  Holger Hermanns,et al.  Bisimulation Algorithms for Stochastic Process Algebras and Their BDD-Based Implementation , 1999, ARTS.

[16]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[17]  Bernd Becker,et al.  Compositional Performability Evaluation for STATEMATE , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[18]  Salem Derisavi Signature-based Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[19]  Simona Orzan,et al.  Distributed Branching Bisimulation Reduction of State Spaces , 2003, Electron. Notes Theor. Comput. Sci..

[20]  R. I. Bahar,et al.  Algebraic decision diagrams and their applications , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[21]  Marta Z. Kwiatkowska,et al.  Symmetry Reduction for Probabilistic Model Checking , 2006, CAV.

[22]  Kishor S. Trivedi,et al.  Stochastic Petri Net Models of Polling Systems , 1990, IEEE J. Sel. Areas Commun..

[23]  Giovanni Chiola,et al.  Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications , 1993, IEEE Trans. Computers.

[24]  Paul J. Schweitzer,et al.  Aggregation Methods for Large Markov Chains , 1983, Computer Performance and Reliability.

[25]  Peng Wu,et al.  Model checking the probabilistic pi-calculus , 2007 .

[26]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[27]  Markus Siegle,et al.  Analysis of Markov reward models using zero-suppressed multi-terminal BDDs , 2006, valuetools '06.

[28]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[29]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..

[30]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[31]  Holger Hermanns,et al.  Exploiting Symmetries in Stochastic Process Algebras , 1998, ESM.

[32]  Stephen Gilmore,et al.  An Efficient Algorithm for Aggregating PEPA Models , 2001, IEEE Trans. Software Eng..

[33]  William H. Sanders,et al.  Solution of Large Markov Models Using Lumping Techniques and Symbolic Data Structures , 2005 .

[34]  Souheib Baarir,et al.  On the use of exact lumpability in partially symmetrical well-formed nets , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[35]  Bernd Becker,et al.  Optimization techniques for BDD-based bisimulation computation , 2007, GLSVLSI '07.

[36]  William H. Sanders,et al.  Reduced Base Model Construction Methods for Stochastic Activity Networks , 1991, IEEE J. Sel. Areas Commun..

[37]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[38]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[39]  Simona Orzan,et al.  A distributed algorithm for strong bisimulation reduction of state spaces , 2002, PDMC@CONCUR.

[40]  M. Siegle,et al.  Multi Terminal Binary Decision Diagrams to Represent and Analyse Continuous Time Markov Chains , 1999 .

[41]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[42]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[43]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[44]  William H. Sanders,et al.  Dependability Evaluation Using Composed SAN-Based Reward Models , 1992, J. Parallel Distributed Comput..

[45]  Alain Kerbrat,et al.  CADP - A Protocol Validation and Verification Toolbox , 1996, CAV.

[46]  Stephan Merz,et al.  Model Checking , 2000 .

[47]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[48]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[49]  Robin Milner,et al.  Lectures on a Calculus for Communicating Systems , 1984, Seminar on Concurrency.

[50]  Salem Derisavi A Symbolic Algorithm for Optimal Markov Chain Lumping , 2007, TACAS.