Conversions between barycentric, RKFUN, and Newton representations of rational interpolants

We derive explicit formulas for converting between rational interpolants in barycentric, rational Krylov (RKFUN), and Newton form. We show applications of these conversions when working with rational approximants produced by the AAA algorithm [Y. Nakatsukasa, O. Sete, L. N. Trefethen, arXiv preprint 1612.00337, 2016] within the Rational Krylov Toolbox and for the solution of nonlinear eigenvalue problems.

[1]  Karl Meerbergen,et al.  Automatic rational approximation and linearization of nonlinear eigenvalue problems , 2018, IMA Journal of Numerical Analysis.

[2]  Marc Van Barel,et al.  Designing rational filter functions for solving eigenvalue problems by contour integration , 2015 .

[3]  C. Schneider,et al.  Some new aspects of rational interpolation , 1986 .

[4]  Wim Michiels,et al.  Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[5]  Stefan Güttel,et al.  A Rational Krylov Toolbox for MATLAB , 2014 .

[6]  Stefan Güttel,et al.  Generalized Rational Krylov Decompositions with an Application to Rational Approximation , 2015, SIAM J. Matrix Anal. Appl..

[7]  Raf Vandebril,et al.  Matrix Computations and Semiseparable Matrices: Eigenvalue and Singular Value Methods , 2008 .

[8]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[9]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[10]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[11]  Thomas Bagby On interpolation by rational functions , 1969 .

[12]  Wim Michiels,et al.  NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[13]  Robert M. Corless,et al.  Stability of rootfinding for barycentric Lagrange interpolants , 2013, Numerical Algorithms.

[14]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices , 2007 .

[15]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[16]  Lloyd N. Trefethen,et al.  The AAA Algorithm for Rational Approximation , 2016, SIAM J. Sci. Comput..

[17]  Mario Berljafa,et al.  Rational Krylov decompositions : theory and applications , 2017 .

[18]  Lloyd N. Trefethen,et al.  Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic , 2015, SIAM J. Sci. Comput..

[19]  Stefan Güttel,et al.  The nonlinear eigenvalue problem∗ , 2017 .

[20]  Ping Tak Peter Tang,et al.  Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..

[21]  Georges Klein,et al.  Applications of linear barycentric rational interpolation , 2012 .

[22]  Stefan Güttel,et al.  The RKFIT Algorithm for Nonlinear Rational Approximation , 2017, SIAM J. Sci. Comput..

[23]  Axel Ruhe Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .