Synthesis of a lipomannan component of the cell-wall complex of Mycobacterium tuberculosis is based on Paulsen's concept of donor/acceptor "match".

[1]  R. Friesen,et al.  Coupling Of Glycals: A New Strategy For The Rapid Assembly Of Oligosaccharides , 1989, Modern Methods in Carbohydrate Synthesis.

[2]  H. Paulsen Fortschritte bei der selektiven chemischen Synthese komplexer Oligosaccharide , 2006 .

[3]  André Lopez,et al.  Highly ordered supra-molecular organization of the mycobacterial lipoarabinomannans in solution. Evidence of a relationship between supra-molecular organization and biological activity. , 2004, Journal of molecular biology.

[4]  K. Jayaprakash,et al.  One-pot chemo-, regio-, and stereoselective double-differential glycosidation mediated by lanthanide triflates. , 2004, Organic letters.

[5]  S. Homans,et al.  Identification of the 5-methylthiopentosyl substituent in Mycobacterium tuberculosis lipoarabinomannan. , 2004, Angewandte Chemie.

[6]  K. Jayaprakash,et al.  Synthesis of a key Mycobacterium tuberculosis biosynthetic phosphoinositide intermediate. , 2004, Bioorganic & medicinal chemistry letters.

[7]  G. Besra,et al.  Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response , 2004, Molecular microbiology.

[8]  M. Adinolfi,et al.  Effect of dimethoxyethane in Yb(OTf)3-promoted glycosidations ☆ , 2004 .

[9]  K. Jayaprakash,et al.  Synthesis of a malaria candidate glycosylphosphatidylinositol (GPI) structure: a strategy for fully inositol acylated and phosphorylated GPIs. , 2004, Journal of the American Chemical Society.

[10]  C. Uriel,et al.  Reciprocal Donor Acceptor Selectivity (RDAS) and Paulsen’s Concept of “Match” in Saccharide Coupling , 2004 .

[11]  M. Takei,et al.  Z-100, an immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis strain Aoyama B, augments anti-tumor activities of X-ray irradiation against B16 melanoma in association with the improvement of type 1T cell responses. , 2004, Biological & pharmaceutical bulletin.

[12]  M. Takei,et al.  Antimetastatic effect of an immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis strain Aoyama B, Z-100, through the production of interleukin-12. , 2003, Biological & pharmaceutical bulletin.

[13]  C. Uriel,et al.  Thioglycoside and trichloroacetimidate donors in regioselective glycosidations. Comparison with n-pentenyl glycosides , 2003 .

[14]  P. Brennan The Fourth World Congress on Tuberculosis. , 2003, Tuberculosis.

[15]  C. Uriel,et al.  Reciprocal donor acceptor selectivity (RDAS): A new concept for "matching" donors with acceptors , 2002 .

[16]  H. Sasaki,et al.  Anti‐Tumor Mechanism of Z‐100, an Immunomodulatory Arabinomannan Extracted from Mycobacterium tuberculosis Strain Aoyama B, on Pulmonary Metastases of B16F10 Melanoma: Restoration of Helper T Cell Responses via Suppression of Glucocorticoid‐Genesis , 2002, Microbiology and immunology.

[17]  C. Uriel,et al.  Unexpected role of O-2 "protecting" groups of glycosyl donors in mediating regioselective glycosidation. , 2002, Journal of the American Chemical Society.

[18]  S. Homans,et al.  5-Methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. , 2002, Journal of molecular biology.

[19]  T. Lowary Mycobacterial Cell Wall Components , 2001 .

[20]  B. Fraser-Reid,et al.  Targeted glycosyl donor delivery for site-selective glycosylation. , 2000, Organic letters.

[21]  B. Fraser-Reid,et al.  Regioselective Mannosylation Routes to the Antigenic myo-Inositol Component of Mycobacterium tuberculosis , 2000 .

[22]  R. Rogers CDMA takes root at first meeting , 1999 .

[23]  Y. Hayashi,et al.  An immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis, Z-100, restores the balance of Th1/Th2 cell responses in tumor bearing mice. , 1999, Immunology letters.

[24]  C. Dye,et al.  Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. , 1999, JAMA.

[25]  A. Maureen Rouhi,et al.  TUBERCULOSIS: A TOUGH ADVERSARY: With the tools for a renewed battle in place, development of new weapons to combat the ancient plague should proceed at a rapid pace , 1999 .

[26]  Y. Luo,et al.  IFN-alpha 2B enhances Th1 cytokine responses in bladder cancer patients receiving Mycobacterium bovis bacillus Calmette-Guérin immunotherapy. , 1999, Journal of immunology.

[27]  D. Chatterjee The mycobacterial cell wall: structure, biosynthesis and sites of drug action. , 1997, Current opinion in chemical biology.

[28]  P. Lagrange,et al.  Cerebral tuberculosis in patients with the acquired immunodeficiency syndrome (AIDS). Report of 6 cases and review. , 1997, Medicine.

[29]  R. Pollard,et al.  Inhibition of pulmonary metastasis by Z-100, an immunomodulatory lipid-arabinomannan extracted from Mycobacterium tuberculosis, in mice inoculated with B16 melanoma. , 1997, Anti-cancer drugs.

[30]  Makiko Kobayashi,et al.  Z-100, a polysaccharide-rich preparation extracted from the human typeMycobacterium tuberculosis, improves the resistance of Meth-A tumor-bearing mice to endogenous septic infection , 1997, Biotherapy.

[31]  G. Boons Strategies in Oligosaccharide Synthesis , 1996 .

[32]  H. Sasaki,et al.  Effect of Z-100, an immunomodulator extracted from human type tubercle bacilli, on the pulmonary metastases of lewis lung carcinoma in attempt to regulate suppressor T cells and suppressor factor, IL-4 , 1996, Biotherapy.

[33]  G. Boons,et al.  Chemoselective glycosylations (part 1): Differences in size of anomeric leaving groups can be exploited in chemoselective glycosylations , 1995 .

[34]  S. Morita,et al.  A pilot study of combination therapy of radiation and local administration of OK‐432 for esophageal cancer. Five‐year survival and local control rate , 1995, Cancer.

[35]  D. Herndon,et al.  Z-100, a lipid-arabinomannan extracted from Mycobacterium tuberculosis, improves the resistance of thermally injured mice to herpes virus infections. , 1994, Immunology letters.

[36]  S. Ley,et al.  Dispiroketals in synthesis (Part 5): A new opportunity for oligosaccharide synthesis using differentially activated glycosyl donors and acceptors , 1993 .

[37]  R. Roy,et al.  “Active” and “latent” thioglycosyl donors in oligosaccharide synthesis. Application to the synthesis of α-sialosides , 1992 .

[38]  J. H. Boom,et al.  Iodonium Ion-Mediated Mannosylations of Myo-Inositol : Synthesis of a Mycobacteria Phospholipid Fragment , 1992 .

[39]  C. W. Andrews,et al.  Torsional effects in glycoside reactivity: saccharide couplings mediated by acetal protecting groups , 1991 .

[40]  J. H. Boom,et al.  Synthesis of 6-0-(α-D-mannopyranosyl)-D-myo-inositol: a fragment from mycobacteria phospholipids , 1990 .

[41]  P. Konradsson,et al.  Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides , 1988 .

[42]  B. Fraser-Reid,et al.  Concerning the Phosphorylation of Vicinal Diols , 1988 .

[43]  H. Paulsen Advances in Selective Chemical Syntheses of Complex Oligosaccharides , 1982 .

[44]  Y. Murakami,et al.  [Studies on hot water extract of Mycobacterium tuberculosis. I. Structural analyses of polysaccharides (author's transl)]. , 1981, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[45]  F. Suzuki,et al.  Interferon‐Inducing Activity of an Immuno‐therapeutic Anticancer Agent, SSM, Prepared from Mycobacterium tuberculosis Strain Aoyama B , 1981, Microbiology and immunology.