Efficient controlled-phase gate for single-spin qubits in quantum dots

Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems allows for a one-step, robust realization of the controlled-phase (C-phase) gate instead. We analyze the C-phase gate durations and fidelities that can be obtained under realistic conditions, including the effects of charge and nuclear field fluctuations, and find gate error probabilities of below 10-4, possibly allowing fault-tolerant quantum computation.

[1]  K. Kono,et al.  Spin blockade and nuclear spin effect in a g-factor modulated vertical double quantum dot , 2010 .

[2]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[3]  Y. Nazarov,et al.  Pauli spin blockade in the presence of strong spin-orbit coupling , 2009, 0905.1818.

[4]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[5]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[6]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[7]  M. Kastner,et al.  Electrical control of spin relaxation in a quantum dot. , 2007, Physical review letters.

[8]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[9]  Double Occupancy Errors in Quantum Computing Operations: Corrections to Adiabaticity , 2004, cond-mat/0409096.

[10]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[11]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[12]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[13]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[16]  Daniel Loss,et al.  Exchange-controlled single-electron-spin rotations in quantum dots , 2007 .

[17]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[20]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[21]  Amir Yacoby,et al.  Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. , 2010, Physical review letters.

[22]  A. Gossard,et al.  Hyperfine-mediated gate-driven electron spin resonance. , 2007, Physical review letters.

[23]  Y. Hirayama,et al.  Background charge fluctuation in a GaAs quantum dot device , 2004 .

[24]  W. G. van der Wiel,et al.  Coherent single electron spin control in a slanting Zeeman field. , 2005, Physical review letters.

[25]  David P. DiVincenzo,et al.  Physical optimization of quantum error correction circuits , 1999, cond-mat/9905230.

[26]  S. Tarucha,et al.  Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet , 2010, 1002.0897.