Quantum–classical interface based on single flux quantum digital logic

We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit circuit using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

[1]  M. Bocko,et al.  A realistic experiment to demonstrate macroscopic quantum coherence , 2001 .

[2]  M. Ylilammi,et al.  Fabrication Process for RSFQ/Qubit Systems , 2007, IEEE Transactions on Applied Superconductivity.

[3]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[4]  Mark F. Bocko,et al.  A tipping pulse scheme for a rf-SQUID qubit , 2001, quant-ph/0102090.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Frank K. Wilhelm,et al.  Optimal Qubit Control Using Single-Flux Quantum Pulses , 2015, 1512.05495.

[7]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[8]  John M. Martinis,et al.  Accurate Control of Josephson Phase Qubits , 2003 .

[9]  M. Bocko,et al.  An RSFQ variable duty cycle oscillator for driving a superconductive qubit , 2003 .

[10]  Paul I. Bunyk,et al.  Experimental characterization of bit error rate and pulse jitter in RSFQ circuits , 2001 .

[11]  John M. Martinis,et al.  High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier , 2013, 1312.7579.

[12]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[13]  Satoshi Fukui,et al.  Pulse-Field Magnetization for Disc-Shaped MgB2 Bulk Magnets , 2017, IEEE Transactions on Applied Superconductivity.

[14]  Rapid single flux quantum devices with selective dissipation for quantum information processing , 2005, cond-mat/0510189.

[15]  K. Dodge,et al.  Phonon-mediated quasiparticle poisoning of superconducting microwave resonators , 2016, 1610.09351.

[16]  Oleg A. Mukhanov,et al.  Superconductor analog-to-digital converters , 2004, Proceedings of the IEEE.

[17]  R. McDermott,et al.  High-fidelity qubit measurement with a microwave-photon counter , 2014, 1502.01564.

[18]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[19]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[20]  A. Kidiyarova-Shevchenko,et al.  Balanced Comparator for RSFQ Qubit Readout , 2007, IEEE Transactions on Applied Superconductivity.

[21]  M. Leeman,et al.  Niobium flex cable for low temperature high density interconnects , 2013 .

[22]  V. Semenov,et al.  Transmission of single-flux-quantum pulses along superconducting microstrip lines , 1993, IEEE Transactions on Applied Superconductivity.

[23]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[24]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[25]  T. Ohki,et al.  Low-Jc Rapid Single Flux Quantum (RSFQ) Qubit Control Circuit , 2007, IEEE Transactions on Applied Superconductivity.

[26]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[27]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[28]  G. Hilton,et al.  Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing. , 2015, Applied physics letters.

[29]  K. Likharev,et al.  Pulse jitter and timing errors in RSFQ circuits , 1999, IEEE Transactions on Applied Superconductivity.

[30]  D. Englund,et al.  Graphene-based Josephson junction single photon detector , 2017, 1703.09736.

[31]  M. W. Johnson,et al.  A scalable control system for a superconducting adiabatic quantum optimization processor , 2009, 0907.3757.

[32]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[33]  T. V. Filippov,et al.  20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit , 2012 .

[34]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[35]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[36]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[37]  J. R. Olson,et al.  Thermal conductivity of some common cryostat materials between 0.05 and 2 K , 1993 .

[38]  O. Mukhanov,et al.  High resolution ADC system , 1997, IEEE Transactions on Applied Superconductivity.

[39]  A. Kidiyarova-Shevchenko,et al.  Rapid single-flux-quantum circuits for low noise mK operation , 2006 .

[40]  D. Ristè,et al.  Digital Feedback Control , 2016 .

[41]  M. Bocko,et al.  Picosecond on-chip qubit control circuitry , 2005, IEEE Transactions on Applied Superconductivity.

[42]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[43]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[44]  Patrick J. Sutton,et al.  Genetic algorithms: A general search procedure , 1994 .

[45]  R. McDermott,et al.  Accurate Qubit Control with Single Flux Quantum Pulses , 2014, 1408.0390.

[46]  Mark F. Bocko,et al.  Design of an RSFQ control circuit to observe MQC on an rf-SQUID , 2001 .

[47]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[48]  Anna Y. Herr,et al.  Ultra-low-power superconductor logic , 2011, 1103.4269.

[49]  A. Shnirman,et al.  Design of a ballistic fluxon qubit readout , 2007 .

[50]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[51]  A. Kidiyarova-Shevchenko,et al.  Reading out the state of a flux qubit by Josephson transmission line solitons , 2006, cond-mat/0611680.

[52]  L. Frunzio,et al.  Josephson directional amplifier for quantum measurement of superconducting circuits. , 2013, Physical review letters.

[53]  Deanna C. Pineau,et al.  Theory of Josephson Photomultipliers: Optimal Working Conditions and Back Action , 2012, 1206.0360.

[54]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[55]  Li Ren,et al.  Design of Cryogenic Cooling System of a 35-kV/3.5-MVA Single-Phase HTS-Controllable Reactor , 2016, IEEE Transactions on Applied Superconductivity.

[56]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[57]  David P. DiVincenzo,et al.  Multi-qubit parity measurement in circuit quantum electrodynamics , 2012, 1205.1910.

[58]  Ke Xu,et al.  Designing new ferroelectrics with a general strategy , 2017 .

[59]  H. Alloul Introduction to Superconductivity , 2011 .

[60]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[61]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[62]  Alexandre Blais,et al.  First-order sideband transitions with flux-driven asymmetric transmon qubits , 2013 .

[63]  Nicholas T. Bronn,et al.  Tunable Superconducting Qubits with Flux-Independent Coherence , 2017, 1702.02253.

[64]  M. Feldman,et al.  Isolation filters for macroscopic quantum coherence experiment , 2003 .

[65]  Clarke,et al.  Hot-electron effects in metals. , 1994, Physical review. B, Condensed matter.

[66]  S T Merkel,et al.  Microwave photon counter based on Josephson junctions. , 2010, Physical review letters.

[67]  M. Khabipov,et al.  Josephson junctions with nonlinear damping for rapid single-flux-quantum - qubit circuits , 2005 .

[68]  P. Kes,et al.  Thermal conductivity of niobium in the purely superconducting and normal states , 1974 .

[69]  Andrey L. Pankratov,et al.  Soliton scattering as a measurement tool for weak signals , 2014, 1409.2658.

[70]  T. Ohki,et al.  Niobium Tunable Microwave Filter , 2009, IEEE Transactions on Microwave Theory and Techniques.

[71]  Frank K Wilhelm,et al.  Efficient estimation of resonant coupling between quantum systems. , 2014, Physical review letters.

[72]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[73]  O. Okunev,et al.  Fabrication and properties of an ultrafast NbN hot-electron single-photon detector , 2001 .

[74]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[75]  Anubhav Sahu,et al.  Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation , 2012, 1209.6383.

[76]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[77]  Andrey L. Pankratov,et al.  Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector , 2014 .

[78]  John M Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[79]  V. K. Semenov,et al.  Thermal budget of superconducting digital circuits at subkelvin temperatures , 2005, cond-mat/0509318.

[80]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[81]  Luigi Frunzio,et al.  Directional Amplification with a Josephson Circuit , 2013, 1302.4663.

[82]  Gareth A. Morris,et al.  A simple pulse sequence for selective excitation in Fourier transform NMR , 1976 .

[83]  Vladimir Dotsenko,et al.  Invited Paper Special Section on Recent Progress in Superconductive Digital Electronics Superconductor Digital-rf Receiver Systems , 2022 .

[84]  A. N. Korotkov,et al.  Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback , 2012, Nature.

[85]  K. Likharev,et al.  RSFQ TECHNOLOGY: PHYSICS AND DEVICES , 2001 .

[86]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[87]  R. McDermott,et al.  Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction , 2012, 1201.2990.

[88]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[89]  R. McDermott,et al.  Scalable two- and four-qubit parity measurement with a threshold photon counter , 2015, 1502.03340.

[90]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[91]  M. Bocko,et al.  Thermometry using thermal activation of Josephson junctions at MilliKelvin temperatures , 2005, IEEE Transactions on Applied Superconductivity.

[92]  O. Naaman,et al.  Josephson junction microwave modulators for qubit control , 2016, 1610.07987.

[93]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[94]  V. Semenov,et al.  SFQ control circuits for Josephson junction qubits , 2003 .

[95]  John G. Brisson,et al.  The thermal conductivity of Kapton HN between 0.5 and 5 K , 2000 .

[96]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[97]  Naoki Takeuchi,et al.  An adiabatic quantum flux parametron as an ultra-low-power logic device , 2013 .

[98]  Andrew G. Glen,et al.  APPL , 2001 .