Thickness dependence of the anomalous Hall effect in thin films of the topological semimetal Co2MnGa

Topological magnetic semimetals promise large Berry curvature through the distribution of the topological Weyl nodes or nodal lines and further novel physics with exotic transport phenomena. We present a systematic study of the structural and magnetotransport properties of Co$_2$MnGa films from thin (20 nm) to bulk like behavior (80 nm), in order to understand the underlying mechanisms and the role on the topology. The magnetron sputtered Co$_2$MnGa films are $L$$2_{\mathrm {1}}$-ordered showing very good heteroepitaxy and a strain-induced tetragonal distortion. The anomalous Hall conductivity was found to be maximum at a value of 1138 S/cm, with a corresponding anomalous Hall angle of 13 %, which is comparatively larger than topologically trivial metals. There is a good agreement between the theoretical calculations and the Hall conductivity observed for the 80 nm film, which suggest that the effect is intrinsic. Thus, the Co$_2$MnGa compound manifests as a promising material towards topologically-driven spintronic applications.

[1]  C. Felser,et al.  Characterization of topological band structures away from the Fermi level by the anomalous Nernst effect , 2018, Physical Review B.

[2]  A. Thomas,et al.  Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa , 2018, Applied Physics Letters.

[3]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[4]  Sarah J. Watzman,et al.  Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.

[5]  C. Felser,et al.  Strong anomalous Nernst effect in collinear magnetic Weyl semimetals without net magnetic moments , 2018, Physical Review B.

[6]  C. Felser,et al.  Heusler, Weyl and Berry , 2018, Nature Reviews Materials.

[7]  R. Arita,et al.  Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal , 2018, Nature photonics.

[8]  C. Felser,et al.  Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2 , 2017, Physical Review B.

[9]  G. Fecher,et al.  From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design , 2017, Physical Review X.

[10]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[11]  Baokai Wang,et al.  Topological Hopf and Chain Link Semimetal States and Their Application to Co_{2}MnGa. , 2017, Physical review letters.

[12]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[13]  B. Ruck,et al.  Perpendicular magnetic anisotropy in Co2MnGa and its anomalous Hall effect , 2017 .

[14]  J. Zhao,et al.  Anomalous resistivity upturn in epitaxial L21-Co2MnAl films , 2016, Scientific Reports.

[15]  C. Felser,et al.  Weyl points in the ferromagnetic Heusler compound Co2MnAl , 2016 .

[16]  Shanjuan Jiang,et al.  Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal , 2016, Science.

[17]  Su-Yang Xu,et al.  Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn) , 2016, Scientific Reports.

[18]  B Andrei Bernevig,et al.  Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. , 2016, Physical review letters.

[19]  C. Felser,et al.  Visualizing"Fermi arcs"in the Weyl semimetal TaAs , 2016, 1603.00283.

[20]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[21]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[22]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[23]  Yan Sun,et al.  Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP , 2015, 1508.06649.

[24]  M. Belmeguenai,et al.  Correlations between structural, electronic transport, and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy epitaxial thin films , 2015 .

[25]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[26]  C. Gorini,et al.  Spin Hall Effects Due to Phonon Skew Scattering. , 2015, Physical review letters.

[27]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[28]  A. Burkov,et al.  Anomalous Hall effect in Weyl metals. , 2014, Physical review letters.

[29]  A. Vishwanath,et al.  Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals , 2013, 1306.1234.

[30]  Eugen Wintersberger,et al.  xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors , 2013, Journal of applied crystallography.

[31]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[32]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[33]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[34]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[35]  C. Felser,et al.  Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors , 2011 .

[36]  F. Freimuth,et al.  Ab initio theory of the scattering-independent anomalous Hall effect. , 2011, Physical review letters.

[37]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[38]  G. Jakob,et al.  Influence of disorder on anomalous Hall effect for Heusler compounds , 2011 .

[39]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[40]  H. Ebert,et al.  Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an ab initio level. , 2010, Physical review letters.

[41]  J. Sinova,et al.  Anomalous Hall effect in disordered multiband metals. , 2010, Physical review letters.

[42]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[43]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[44]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[45]  B. Aktaş,et al.  Erratum: Doping and disorder in the CO2MnAl and Co2MnGa half-metallic Heusler alloys , 2006, cond-mat/0607652.

[46]  N. Papanikolaou,et al.  Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys , 2002 .

[47]  P. J. Webster,et al.  The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets , 2000 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  Allen,et al.  Transport properties, thermodynamic properties, and electronic structure of SrRuO3. , 1996, Physical review. B, Condensed matter.

[50]  D. A. Goodings Electrical Resistivity of Ferromagnetic Metals at Low Temperatures , 1963 .

[51]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[52]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering , 2004 .