Micro‐ and nano‐electromechanical resonators based on SiC and group III‐nitrides for sensor applications

Wide-bandgap semiconductors represent an attractive option to meet the increasing demands of micro- and nano-electromechanical systems (MEMS/NEMS) by offering new functionalities, high stability, biocompatibility and the potential for miniaturization and integration. Here, we report on resonant MEMS and NEMS devices with functional layers of SiC, AlN and AlGaN/GaN heterostructures on different substrates, which have been investigated and analysed in the course of an interdisciplinary research focus programme of the German Research Foundation (DFG). The specific deposition and etching technologies necessary for the three-dimensional micro-structuring are explained. Further, the implementation of appropriate electromechanical transduction schemes is discussed. In case of SiC and AlN resonators, actuation and sensing was achieved by a magnetomotive scheme. A piezoelectric coupling scheme where the counter electrode is formed by the two-dimensional electron gas at the interface of the III/V heterostructure was realized for the AlGaN/GaN resonators. Thus, flexural and longitudinal vibration modes were excited and characterized using electrical and optical techniques. The measured key parameters of resonant frequency and quality factor are related to geometry, material and environmental parameters using analytical and finite element (FE) models. Finally, potential sensor applications are experimentally investigated.

[1]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[2]  Wenjing Ye,et al.  On the squeeze-film damping of micro-resonators in the free-molecule regime , 2004 .

[3]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[4]  Michael Curt Elwenspoek,et al.  Resonating silicon beam force sensor , 1989 .

[5]  S. Muensit,et al.  Extensional piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[6]  Don L. DeVoe,et al.  Piezoelectric thin film micromechanical beam resonators , 2001 .

[7]  Oliver Ambacher,et al.  Piezoelectric properties of polycrystalline AlN thin films for MEMS application , 2006 .

[8]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[9]  Richard M. White,et al.  Viscosity and density sensing with ultrasonic plate waves , 1990 .

[10]  Michael L. Roukes,et al.  Balanced electronic detection of displacement in nanoelectromechanical systems , 2002 .

[11]  T. Veijola,et al.  Equivalent-circuit model of the squeezed gas film in a silicon accelerometer , 1995 .

[12]  Resonant MEMS based on cubic GaN layers , 2010 .

[13]  Weileun Fang,et al.  Comments on the size effect on the microcantilever quality factor in free air space , 2006 .

[14]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[15]  J. Flemish,et al.  Profile and Morphology Control during Etching of SiC Using Electron Cyclotron Resonant Plasmas , 1996 .

[16]  Michael L. Roukes,et al.  Intrinsic dissipation in high-frequency micromechanical resonators , 2002 .

[17]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[18]  T. Ikehara,et al.  New method for an accurate determination of residual strain in polycrystalline silicon films by analysing resonant frequencies of micromachined beams , 2001 .

[19]  Chr Edelmann,et al.  Miniaturized vacuum gauges , 2004 .

[20]  Lester F. Eastman,et al.  Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures , 2003 .

[21]  Wei Pang,et al.  Femtogram mass sensing platform based on lateral extensional mode piezoelectric resonator , 2006 .

[22]  B. Culshaw,et al.  Measurement of the mechanical properties of silicon microresonators , 1991 .

[23]  H. Hosaka,et al.  DAMPING CHARACTERISTICS OF BEAM-SHAPED MICRO-OSCILLATORS , 1995 .

[24]  Kimberly L. Turner,et al.  Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis , 2007 .

[25]  John A. Judge,et al.  Attachment losses of high Q oscillators , 2004 .

[26]  Yoshida Takashi,et al.  Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm , 1990 .

[27]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[28]  Stefano Bianco,et al.  Silicon resonant microcantilevers for absolute pressure measurement , 2006 .

[29]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[30]  K. Hane,et al.  Photothermal vibration for a membrane in water , 1992 .

[31]  J. Fluitman,et al.  Selective mode excitation and detection of micromachined resonators , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[32]  Qing Jiang,et al.  Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator , 2004 .

[33]  Masahiro Hirata,et al.  A bending and stretching mode crystal oscillator as a friction vacuum gauge , 1984 .

[34]  M. K. Andrews,et al.  A resonant pressure sensor based on a squeezed film of gas , 1993 .

[35]  Reza Abdolvand,et al.  Voltage-tunable piezoelectrically-transduced single-crystal silicon micromechanical resonators , 2004 .

[36]  K. Petersen,et al.  Young’s modulus measurements of thin films using micromechanics , 1979 .

[37]  Farrokh Ayazi,et al.  Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators , 2007, IEEE Journal of Solid-State Circuits.

[38]  João Pedro Conde,et al.  Resonance of electrostatically actuated thin-film amorphous silicon microelectromechanical systems microresonators in aqueous solutions : Effect of solution conductivity and viscosity , 2007 .

[39]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[40]  Brian H. Houston,et al.  Effect of viscous loss on mechanical resonators designed for mass detection , 2006 .

[41]  H. Tilmans Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems , 1997 .

[42]  Oliver Ambacher,et al.  Nanoelectromechanical devices for sensing applications , 2007 .

[43]  O. Ambacher,et al.  Electric field distribution in GaN∕AlGaN∕GaN heterostructures with two-dimensional electron and hole gas , 2008 .

[44]  O. Ambacher,et al.  Pulsed mode operation of strained microelectromechanical resonators in air , 2006 .

[45]  M. Roukes,et al.  VHF, UHF and microwave frequency nanomechanical resonators , 2005 .

[46]  Hartono Sumali,et al.  Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS , 2007 .

[47]  J. Fluitman,et al.  Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry , 1992 .

[48]  Hyoun‐Ee Kim,et al.  Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method , 2002 .

[49]  Karla Hiller,et al.  Micromachined pressure gauge for the vacuum range based on damping of a resonator , 2001, SPIE MOEMS-MEMS.

[50]  Matthias Hein,et al.  Micro-electromechanical systems based on 3C-SiC/Si heterostructures , 2005 .

[51]  K. Korona,et al.  Electroreflectance and photoreflectance spectra of tricolor III‐nitride detector structures , 2007 .

[52]  João Pedro Conde,et al.  Electrostatically actuated resonance of amorphous silicon microresonators in water , 2006 .

[53]  O. Ambacher,et al.  Fully unstrained GaN on sacrificial AlN layers by nano‐heteroepitaxy , 2007 .

[54]  Andreas Schober,et al.  Piezoelectric actuation of (GaN/)AlGaN/GaN heterostructures , 2008 .

[55]  R.M. White,et al.  Plate-Mode Ultrasonic Oscillator Sensors , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[56]  2H-AlGaN/GaN HEMTs on 3C-SiC(111)/Si(111) Substrates , 2010 .

[57]  Suresh V. Garimella,et al.  Hydrodynamic loading of microcantilevers vibrating in viscous fluids , 2006 .

[58]  Reza Abdolvand,et al.  Piezoelectric-on-Silicon Lateral Bulk Acoustic Wave Micromechanical Resonators , 2008, Journal of Microelectromechanical Systems.

[59]  Damping Models for Microcantilevers, Bridges, and Torsional Resonators in the Free-Molecular-Flow Regime , 2008, Journal of Microelectromechanical Systems.

[60]  Apparao M. Rao,et al.  Using electric actuation and detection of oscillations in microcantilevers for pressure measurements , 2008 .

[61]  Jenshan Lin,et al.  TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing , 2004 .

[62]  Jan H. J. Fluitman,et al.  Piezoelectrically Driven Silicon Beam Force Sensor , 1991 .

[63]  O. Ambacher,et al.  Wet chemical etching of AlN in KOH solution , 2006 .

[64]  Liviu Nicu,et al.  Piezoelectric properties of PZT films for microcantilever , 1999 .

[65]  Harold G. Craighead,et al.  Virus detection using nanoelectromechanical devices , 2004 .

[66]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[67]  Martin Eickhoff,et al.  Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures – Part B: Sensor applications , 2003 .

[68]  J. Pezoldt,et al.  Temperature Facilitated ECR-Etching for Isotropic SiC Structuring , 2010 .

[69]  H. Bowen,et al.  Cation Distribution and Defect Chemistry of Iron‐Aluminate Spinels , 1981 .

[70]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[71]  Srikar Vengallatore,et al.  Analysis of thermoelastic damping in laminated composite micromechanical beam resonators , 2005 .

[72]  Liviu Nicu,et al.  Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media , 2000 .

[73]  Toshio Kamiya,et al.  Calculation of Crystal Structures, Dielectric Constants and Piezoelectric Properties of Wurtzite-Type Crystals Using Ab-Initio Periodic Hartree-Fock Method , 1996 .

[74]  A. Boisen,et al.  Temperature and pressure dependence of resonance in multi-layer microcantilevers , 2005 .

[75]  E. J. Richards,et al.  Radiation efficiencies of beams in flexural vibration , 1979 .

[76]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[77]  Bernhard Jakoby,et al.  Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing , 2008, J. Sensors.

[78]  M. Eickhoff,et al.  Modulation spectroscopy of AlGaN/GaN heterostructures: The influence of electron–hole interaction , 2007 .

[79]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[80]  L. Buchaillot,et al.  Amplified piezoelectric transduction of nanoscale motion in gallium nitride electromechanical resonators , 2009 .

[81]  O. Ambacher,et al.  AlGaN/GaN-based MEMS with two-dimensional electron gas for novel sensor applications , 2008 .

[82]  Michael J. Uren,et al.  Structural and electrical characterization of AuTiAlTi/AlGaN/GaN ohmic contacts , 2002 .

[83]  Oliver Ambacher,et al.  Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications , 2007 .

[84]  E. Kohn,et al.  Piezoelectric GaN sensor structures , 2006, IEEE Electron Device Letters.

[85]  Liviu Nicu,et al.  Multi-Mode Air Damping Analysis of Composite Cantilever Beams , 1999 .

[86]  Andrew Cleland,et al.  External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .

[87]  D. DeVoe,et al.  Piezoelectric Al/sub 0.3/Ga/sub 0.7/As longitudinal mode bar resonators , 2006, Journal of Microelectromechanical Systems.

[88]  J. Pezoldt,et al.  Isotropic Etching of SiC , 2008 .

[89]  J. Sader,et al.  Rheological measurements using microcantilevers , 2002 .

[90]  F. I. Baratta When is a Beam a Plate , 1981 .

[91]  Deepak Uttamchandani,et al.  Measurement of Young's modulus and internal stress in silicon microresonators using a resonant frequency technique , 1990 .

[92]  Yuancheng Sun,et al.  Energy transfer model for squeeze-film air damping in low vacuum , 2002 .

[93]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[94]  Oliver Ambacher,et al.  Two-dimensional electron gas based actuation of piezoelectric AlGaN/GaN microelectromechanical resonators , 2008 .

[95]  John E. Sader,et al.  Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface , 2005 .

[97]  Milan Pophristic,et al.  Single-crystal aluminum nitride nanomechanical resonators , 2001 .

[98]  G. Müller,et al.  New Sensors for Automotive and Aerospace Applications , 2001 .

[99]  J. Engel,et al.  The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system , 2006 .

[100]  C. C. Huang,et al.  Efficient and sensitive capacitive readout of nanomechanical resonator arrays. , 2007, Nano letters.

[101]  J. Ruzyllo,et al.  Nearly isotropic etching of 6H‐SiC in NF3 and O2 using a remote plasma , 1993 .