High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte

Abstract High oxygen content (10–15 at.%) nanotextured carbons were obtained by pyrolysis of seaweeds at 600–750 °C and applied as electrodes for supercapacitors in H2SO4, KOH and Na2SO4 aqueous media. Interestingly, the potential stability window measured in a three-electrode cell configuration depends both on the nature of the oxygenated surface functionality and on the electrolyte pH. A high value of 2.4 V was observed in Na2SO4 for the seaweeds pyrolysed at 600 °C, showing that the surface functionality strongly influences the over-potentials of di-hydrogen evolution and carbon oxidation. Symmetric capacitors built from the seaweed carbons exhibited an excellent cycle life for voltage values up to 1.6 V, showing the promise of Na2SO4 for developing high energy density and environment friendly systems.

[1]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[2]  Keiichi Okajima,et al.  Capacitance behavior of activated carbon fibers with oxygen-plasma treatment , 2005 .

[3]  H. Hatori,et al.  Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors , 2006 .

[4]  F. Béguin,et al.  Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials , 2004 .

[5]  S. Biniak,et al.  Cyclic voltammetric studies of chemically and electrochemically generated oxygen species on activated carbons , 1997 .

[6]  B. Wei,et al.  Supercapacitors from Activated Carbon Derived from Banana Fibers , 2007 .

[7]  M. Čadek,et al.  Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds , 2009 .

[8]  Joseph Wang,et al.  Glassy carbon paste electrodes , 2001 .

[9]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[10]  S. Nishimura,et al.  Structural characterization and electric double layer capacitance of template carbons , 2004 .

[11]  B. Conway,et al.  Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs , 2006 .

[12]  Chi-Chang Hu,et al.  Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors , 2007 .

[13]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[14]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[15]  N. Nishiyama,et al.  Nitrogen-containing microporous carbons prepared from anionic surfactant-melamine/formaldehyde composites , 2009 .

[16]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[17]  D. Cazorla-Amorós,et al.  CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons , 1998 .

[18]  Yuping Wu,et al.  Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes , 2008 .

[19]  Zhonghua Zhu,et al.  Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors , 2008 .

[20]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[21]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[22]  D. Linden Handbook Of Batteries , 2001 .

[23]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[24]  H. Konno,et al.  High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method , 2010 .

[25]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[26]  S. Biniak,et al.  Electrochemical Studies of Phenomena at Active Carbon—Electrolyte Solution Interfaces , 2001 .

[27]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[28]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[29]  R. Pietrzak,et al.  Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea , 2008 .

[30]  V. Ruiz,et al.  Long-term cycling of carbon-based supercapacitors in aqueous media , 2009 .

[31]  H. Boehm,et al.  Basische Oberflächenoxide auf Kohlenstoff—I. Adsorption von säuren , 1970 .

[32]  H. Teng,et al.  Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors , 2003 .

[33]  F. Béguin,et al.  State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium , 2006 .