Possible New Directions in Mathematical Foundations of Fuzzy Technology: A Contribution to the Mathematics of Fuzzy Theory

Why mathematical foundations Many successful applications of fuzzy logic and fuzzy set theory such as fuzzy control and many methods of fuzzy imag ing rst appeared as heuristics without any precise mathematical justi cation In such heuristic applica tions the choice of techniques or parameters is usu ally done empirically After a su cient amount of the corresponding empirical data becomes available this data inspires mathematical foundations for the original heuristics and empirical choices

[1]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[2]  Vladik Kreinovich,et al.  Optimal Choices of Potential Functions in Fuzzy Clustering , 1998 .

[3]  H.T. Nguyen,et al.  A modification of Sugeno integral describes stability and smoothness of fuzzy control , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[4]  J. Goguen L-fuzzy sets , 1967 .

[5]  Didier Dubois,et al.  Readings in Fuzzy Sets for Intelligent Systems , 1993 .

[6]  Vladik Kreinovich,et al.  Granularity via nondeterministic computations: What we gain and what we lose , 1997 .

[7]  Vladik Kreinovich,et al.  Operations with Fuzzy Numbers Explain Heuristic Methods in Image Processing , 1998 .

[8]  Vladik Kreinovich,et al.  Multi-Criteria Optimization: An Important Foundation of Fuzzy System Design , 1998 .

[9]  Vladik Kreinovich,et al.  Uncertainty Representation Explains and Helps Methodology of Physics and Science in General , 1998 .

[10]  Olga Kosheleva,et al.  Algorithmic problems of nontransitive (SSB) utilities , 1991 .

[11]  Pedro García,et al.  Structured local fuzzy logics in MILORD , 1992 .

[12]  Vladik Kreinovich,et al.  Towards Combining Fuzzy and Logic Programming Techniques , 1998 .

[13]  Josep Puyol-Gruart,et al.  A Specialisation Calculus to Improve Expert Systems Communication , 1992, ECAI.

[14]  Vladik Kreinovich,et al.  Towards theoretical foundations of soft computing applications , 1995, Proceedings the 11th Conference on Artificial Intelligence for Applications.

[15]  Vladik Kreinovich,et al.  Astrogeometry: Towards Mathematical Foundations , 1996 .

[16]  Vladik Kreinovich,et al.  Complex Problems: Granularity is Necessary, Granularity Helps , 1998 .

[17]  Vladik Kreinovich,et al.  Interpolation that leads to the narrowest intervals and its application to expert systems and intelligent control , 1995, Reliab. Comput..

[18]  V. Kreinovich,et al.  On the possibility of using complex values in fuzzy logic for representing inconsistencies , 1998, Int. J. Intell. Syst..

[19]  Vladimir B. Gisin,et al.  On transitivity of strict preference relations , 1994 .

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[22]  Vladik Kreinovich,et al.  Interval Approach to Non-Destructive Testing of Aerospace Structures and to Mammography , 1998 .

[23]  T. Nguyen,et al.  Adding Fuzzy Integral to Fuzzy ControlH , 1998 .

[24]  Hung T. Nguyen,et al.  On robustness of fuzzy logics , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[25]  Vladik Kreinovich,et al.  Computational Complexity and Feasibility of Fuzzy Data Processing: Why Fuzzy Numbers, Which Fuzzy Numbers, Which Operations with Fuzzy Numbers , 1998 .

[26]  Vladik Kreinovich,et al.  Methodology of Fuzzy Control: An Introduction , 1998 .

[27]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[28]  V. Kreinovich,et al.  Towards Computers of Generation Omega - Non-Equilibrium Thermodynamics, Granularity, and Acausal Processes: A Brief Survey , 1997 .

[29]  Peter C. Fishburn,et al.  Nonlinear preference and utility theory , 1988 .

[30]  Hans J. Zimmermann,et al.  Results of Empirical Studies in Fuzzy Set Theory , 1978 .

[31]  Gregg C. Oden,et al.  Integration of fuzzy logical information. , 1977 .

[32]  Alex Meystel,et al.  Multi-Resolution Data Processing: It is Necessary, it is Possible, it is Fundamental , 1997 .

[33]  Vladik Kreinovich,et al.  Using Gelfond-Przymusinska’s epistemic specifications to justify (some) heuristic methods used in expert systems and intelligent control , 1997, Soft Comput..

[34]  Vladik Kreinovich,et al.  Optimal strategy of switching reasoning methods in fuzzy control , 1995 .

[35]  Vladik Kreinovich,et al.  Decision making based on satellite images: optimal fuzzy clustering approach , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[36]  Vladik Kreinovich,et al.  What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control , 1991 .

[37]  Vladik Kreinovich,et al.  Soft Computing: Frontiers? A Case Study of Hyper-Spectral Satellite Imaging , 1997 .

[38]  Vladik Kreinovich,et al.  Towards Formalization of Feasibility, Randomness, and Commonsense Implication: Kolmogorov Complexity, and the Necessity of Considering (Fuzzy) Degrees , 1998 .

[39]  R. R. Zapatrin,et al.  Fundamental physical equations uniquely determined by their symmetry groups , 1986 .

[40]  Edward H. Shortliffe,et al.  Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley series in artificial intelligence) , 1984 .

[41]  Lluis Godo,et al.  MILORD: The architecture and the management of linguistically expressed uncertainty , 1989, Int. J. Intell. Syst..

[42]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[43]  Vladik Kreinovich,et al.  How to describe partially ordered preferences, mathematical foundations , 1998 .

[44]  Vladik Kreinovich,et al.  Interval-Valued Degrees of Belief: Applications of Interval Computations to Expert Systems and Intelligent Control , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[45]  Vladik Kreinovich,et al.  A Measure of Average sensitivity for fuzzy Logics , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[46]  Vladik Kreinovich,et al.  Applications of Continuous Mathematics to Computer Science , 1997 .

[47]  Vladik Kreinovich,et al.  Spinal Cord Stimulation for Chronic Pain Management: Towards an Expert System , 1997 .

[48]  Hung T. Nguyen,et al.  A First Course in Fuzzy Logic , 1996 .

[49]  Vladik Kreinovich,et al.  ALPS: a logic for program synthesis (motivated by fuzzy logic) , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[50]  J. Blin Fuzzy Relations in Group Decision Theory , 1974 .

[51]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[52]  Andrew Whinston,et al.  Fuzzy Sets and Social Choice , 1973 .

[53]  Vladik Kreinovich,et al.  On the formulation of optimization under elastic constraints (with control in mind) , 1996, Fuzzy Sets Syst..