Topological entropy and Hausdorff dimension of irregular sets for non-hyperbolic dynamical systems

We systematically investigate examples of non-hyperbolic dynamical systems having irregular sets of full topological entropy and full Hausdorff dimension. The examples include some partially hyperbolic systems and geometric Lorenz flows. We also pose interesting questions for future research.

[1]  Yun Zhao,et al.  Weighted Entropy of a Flow on Non-compact Sets , 2012, Journal of Dynamics and Differential Equations.

[2]  T. Küpper,et al.  Topological entropy for divergence points , 2005, Ergodic Theory and Dynamical Systems.

[3]  Measures of intermediate entropies for star vector fields , 2018, 1808.08700.

[4]  L. Barreira Thermodynamic Formalism and Applications to Dimension Theory , 2011 .

[5]  José F. Alves,et al.  SRB measures for partially hyperbolic systems whose central direction is mostly expanding , 2000, 1403.2937.

[6]  Dawei Yang On the historical behavior of singular hyperbolic attractors , 2019, Proceedings of the American Mathematical Society.

[7]  K. Lau,et al.  Ergodic Limits on the Conformal Repellers , 2002 .

[8]  K. Gelfert Horseshoes for diffeomorphisms preserving hyperbolic measures , 2014, 1411.7424.

[9]  Xueting Tian Topological Pressure for the Completely Irregular Set of Birkhoff Averages , 2014, 1408.3960.

[10]  Jiagang Yang Entropy along expanding foliations , 2016, 1601.05504.

[11]  Y. Chung,et al.  Multifractal formalism for Benedicks–Carleson quadratic maps , 2011, Ergodic Theory and Dynamical Systems.

[12]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[13]  Dawei Yang,et al.  NON-HYPERBOLIC ERGODIC MEASURES AND HORSESHOES IN PARTIALLY HYPERBOLIC HOMOCLINIC CLASSES , 2018, Journal of the Institute of Mathematics of Jussieu.

[14]  L. Díaz,et al.  Weak* and entropy approximation of nonhyperbolic measures: a geometrical approach , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  J. Palis,et al.  On the continuity of Hausdorff dimension and limit capacity for horseshoes , 1988 .

[16]  L. Díaz,et al.  Nonhyperbolic step skew-products: Ergodic approximation , 2016, 1602.06845.

[17]  C. Bonatti,et al.  SRB measures for partially hyperbolic systems whose central direction is mostly contracting , 2000 .

[18]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[19]  Ming-Chia Li,et al.  Geometric Lorenz flows with historic behavior , 2015, 1511.05257.

[20]  Tomasz Downarowicz,et al.  Symbolic extensions and smooth dynamical systems , 2005 .

[21]  J. Buzzi,et al.  The entropy of C-diffeomorphisms without a dominated splitting , 2016 .

[22]  F. J. Sánchez-Salas On the approximation of dynamical indicators in systems with nonuniformly hyperbolic behavior , 2015, 1505.02473.

[23]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[24]  Y. Pesin,et al.  Topological pressure and the variational principle for noncompact sets , 1984 .

[25]  R. Bowen TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS , 1973 .

[26]  R. Bowen Ergodic theory of Axiom A flows , 1975 .

[27]  K. Gelfert,et al.  Hyperbolic graphs: Critical regularity and box dimension , 2017, Transactions of the American Mathematical Society.

[28]  P. Oprocha,et al.  A PANORAMA OF SPECIFICATION-LIKE PROPERTIES AND THEIR CONSEQUENCES , 2015, 1503.07355.

[29]  Kenichiro Yamamoto,et al.  Irregular Sets for Piecewise Monotonic Maps , 2019, Tokyo Journal of Mathematics.

[30]  P. Oprocha,et al.  On the irregular points for systems with the shadowing property , 2015, Ergodic Theory and Dynamical Systems.

[31]  Sylvie Ruette Chaos on the Interval , 2017 .

[32]  A. Hammerlindl,et al.  Pointwise partial hyperbolicity in three‐dimensional nilmanifolds , 2013, J. Lond. Math. Soc..

[33]  On Bowen entropy inequality for flows , 2019, 1908.08072.

[34]  Mark Pollicott,et al.  The dimensions of some self-affine limit sets in the plane and hyperbolic sets , 1994 .

[35]  Y. Chung Birkhoff spectra for one-dimensional maps with some hyperbolicity , 2008, 0803.1522.

[36]  A. Hammerlindl Partial hyperbolicity on 3-dimensional nilmanifolds , 2011, 1103.3724.

[37]  An explicit formula for the pressure of box-like affine iterated function systems , 2017, Journal of Fractal Geometry.

[38]  A. Manning,et al.  Hausdorff dimension for horseshoes , 1983, Ergodic Theory and Dynamical Systems.

[39]  Hyperbolic Sets and Entropy at the Homological Level , 2014, 1407.5101.

[40]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[41]  Floris Takens Orbits with historic behaviour, or non-existence of averages , 2008 .

[42]  Hausdorff Dimension of the Irregular Set in Non-Uniformly Hyperbolic Systems , 2017 .

[43]  A. Avila,et al.  C1 density of stable ergodicity , 2017, Advances in Mathematics.

[44]  Kristie B. Hadden,et al.  2020 , 2020, Journal of Surgical Orthopaedic Advances.

[45]  C. Vásquez INTRINSIC ERGODICITY OF PARTIALLY HYPERBOLIC DIFFEOMORPHISMS WITH A HYPERBOLIC LINEAR PART , 2011 .

[46]  Hausdorff Dimension , 2012, The Krzyż Conjecture: Theory and Methods.

[47]  Fe b 20 13 SKEW PRODUCTS AND RANDOM WALKS ON THE UNIT , 2013 .

[48]  A. Fan,et al.  Recurrence, Dimension and Entropy , 2001 .

[49]  D. Thompson The irregular set for maps with the specification property has full topological pressure , 2008, 0807.2123.

[50]  Topological entropy and Hausdorfi dimension for area preserving difieomor-phisms of surfaces , 1978 .

[51]  Y. Pesin Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .

[52]  A. Gorodetski On Stochastic Sea of the Standard Map , 2010, 1007.1474.

[53]  Kenichiro Yamamoto,et al.  Specification and partial hyperbolicity for flows , 2015, 1502.00745.

[54]  I. Morris,et al.  On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems , 2016, Transactions of the American Mathematical Society.

[55]  T. Fisher,et al.  Dynamical coherence of partially hyperbolic diffeomorphisms of tori isotopic to Anosov , 2013, 1305.1915.

[56]  Christian Bonatti,et al.  Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective , 2004 .

[57]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[58]  C. Moreira,et al.  Hausdorff Dimension, Lagrange and Markov Dynamical Spectra for Geometric Lorenz Attractors , 2016, Bulletin of the American Mathematical Society.

[59]  K. Gelfert,et al.  Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and phase transitions , 2010, 1011.6294.

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  Luis Barreira,et al.  Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension , 2000 .