ExploreNEOs. V. AVERAGE ALBEDO BY TAXONOMIC COMPLEX IN THE NEAR-EARTH ASTEROID POPULATION

Examining the albedo distribution of the near-Earth object (NEO) population allows for a better understanding of the relationship between absolute (H) magnitude and size, which impacts calculations of the size frequency distribution and impact hazards. Examining NEO albedos also sheds light on the differences between the NEO and Main Belt populations. We combine albedo results from the ExploreNEOs Warm Spitzer Exploration Science program with taxonomic classifications from the literature, publicly available data sets, and new observations from our concurrent spectral survey to derive the average albedos for C-, D-, Q-, S-, V-, and X-complex NEOs. Using a sample size of 118 NEOs, we calculate average albedos of 0.29+0.05 –0.04, 0.26+0.04 –0.03, and 0.42+0.13 –0.11 for the Q-, S-, and V-complexes, respectively. The averages for the C- and D-complexes are 0.13+0.06 –0.05 and 0.02+0.02 –0.01, but these averages are based on a small number of objects (five and two, respectively) and will improve with additional observations. We use albedos to assign X-complex asteroids to one of the E-, M-, or P-types. Our results demonstrate that the average albedos for the C-, S-, V-, and X-complexes are higher for NEOs than the corresponding averages observed in the Main Belt.

[1]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[2]  D. Trilling,et al.  EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER NEAR-EARTH OBJECT SURVEY , 2010 .

[3]  C. Woodward,et al.  RECTIFIED ASTEROID ALBEDOS AND DIAMETERS FROM IRAS AND MSX PHOTOMETRY CATALOGS , 2010, 1006.4362.

[4]  D. Vokrouhlický,et al.  Do planetary encounters reset surfaces of near Earth asteroids , 2010, 1005.3526.

[5]  A. Harris,et al.  The cool surfaces of binary near-Earth asteroids , 2011 .

[6]  A. Harris,et al.  Thermal Infrared Spectrophotometry of the Near-Earth Asteroids 2100 Ra-Shalom and 1991 EE , 1998 .

[7]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[8]  Stephanie C. Werner,et al.  The Near-Earth Asteroid Size–Frequency Distribution: A Snapshot of the Lunar Impactor Size–Frequency Distribution , 2002 .

[9]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[10]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[11]  T. McCord,et al.  Alteration of Lunar Optical Properties: Age and Composition Effects , 1971, Science.

[12]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[13]  Albedo measurements on meteorite particles , 1998 .

[14]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[15]  David P. O'Brien,et al.  The global effects of impact-induced seismic activity on fractured asteroid surface morphology , 2005 .

[16]  J. S. Stuart,et al.  A Near-Earth Asteroid Population Estimate from the LINEAR Survey , 2001, Science.

[17]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[18]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[19]  Cesare Barbieri,et al.  Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results☆ , 2004 .

[20]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[21]  Giovanni B. Valsecchi,et al.  Dynamical and compositional assessment of near‐Earth object mission targets , 2004 .

[22]  Michael J. Gaffey,et al.  Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids , 1992 .

[23]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[24]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[25]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[26]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[27]  Alan W. Harris,et al.  Size, albedo, and taxonomic type of potential spacecraft target Asteroid (10302) 1989 ML , 2007 .

[28]  R. Greenberg,et al.  The collisional and dynamical evolution of the main-belt and NEA size distributions , 2005 .

[29]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[30]  A. Harris,et al.  Physical characterization of the potentially hazardous high-albedo Asteroid (33342) 1998 WT24 from thermal-infrared observations , 2007 .

[31]  A. Harris,et al.  Physical Characteristics of Near-Earth Asteroids from Thermal Infrared Spectrophotometry☆ , 1999 .

[32]  R. Duffard,et al.  S3OS2: the visible spectroscopic survey of 820 asteroids , 2004 .

[33]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[34]  Michael Mommert,et al.  ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS , 2011 .

[35]  Binary Asteroid Orbit Expansion due to Continued YORP Spin-up of the Primary and Primary Surface Particle Motion , 2009 .

[36]  Steven R. Chesley,et al.  ORBITAL IDENTIFICATION FOR ASTEROID 152563 (1992 BF) THROUGH THE YARKOVSKY EFFECT , 2008 .

[37]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[38]  M. Shepard,et al.  Spectroscopy of X-Type Asteroids , 2004 .

[39]  Asteroid Taxonomy V6.0 , 2010 .

[40]  Robert Jedicke,et al.  From Magnitudes to Diameters: The Albedo Distribution of Near Earth Objects and the Earth Collision Hazard , 2002 .

[41]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[42]  I. Shapiro,et al.  Radar Detection of Near-Earth Asteroids 2062 Aten, 2101 Adonis, 3103 Eger, 4544 Xanthus, and 1992 QN☆ , 1997 .

[43]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[44]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[45]  D. Trilling,et al.  ExploreNEOs. II. THE ACCURACY OF THE WARM SPITZER NEAR-EARTH OBJECT SURVEY , 2010 .

[46]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[47]  Andrew Scott Rivkin,et al.  Composition of hydrated near-Earth object (100085) 1992 UY4 , 2007 .