Constraints and limitations on decoding positional information: the Bicoid case-study

The regulation of expression of the hunchback promoter by the maternal Bicoid gradient has been studied as a model system in development for many years. Yet, at the level of quantitative agreement between data and theoretical models, even the first step of this regulation, transcription, continues to be challenging. This situation is slowly progressing, thanks to quantitative live-imaging techniques coupled to advanced statistical data analysis and modelling. Here we outline the current state our knowledge of this apparently “simple” step, highlighting the newly appreciated role of bursty transcription dynamics and its regulation.

[1]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[2]  Hernan G. Garcia,et al.  Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos , 2014, Proceedings of the National Academy of Sciences.

[3]  Aleksandra M. Walczak,et al.  Live Imaging of Bicoid-Dependent Transcription in Drosophila Embryos , 2013, Current Biology.

[4]  Lars Hufnagel,et al.  Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis , 2018, bioRxiv.

[5]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[6]  Maxime Dahan,et al.  Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. , 2012, Biochimica et biophysica acta.

[7]  Heng Xu,et al.  COMBINING PROTEIN AND mRNA QUANTIFICATION TO DECIPHER TRANSCRIPTIONAL REGULATION , 2015, Nature Methods.

[8]  C. Desplan,et al.  Down-regulation of the Drosophila morphogen bicoid by the torso receptor-mediated signal transduction cascade , 1993, Cell.

[9]  Michael W. Perry,et al.  Precision of Hunchback Expression in the Drosophila Embryo , 2012, Current Biology.

[10]  Winship Herr,et al.  Basal promoter elements as a selective determinant of transcriptional activator function , 1995, Nature.

[11]  Nathalie Dostatni,et al.  High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. , 2010, Biophysical journal.

[12]  Ann M. Powers,et al.  Bioluminescent Imaging and Histopathologic Characterization of WEEV Neuroinvasion in Outbred CD-1 Mice , 2013, PloS one.

[13]  L. Mirny,et al.  Nucleosome-mediated cooperativity between transcription factors , 2009, Proceedings of the National Academy of Sciences.

[14]  Danyang Yu,et al.  Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila , 2014, Genes & development.

[15]  J. Stamatoyannopoulos,et al.  The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding , 2011, Genome Biology.

[16]  T. Duke,et al.  Conformational spread: the propagation of allosteric states in large multiprotein complexes. , 2004, Annual review of biophysics and biomolecular structure.

[17]  C. Fradin,et al.  The time to measure positional information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription , 2010, Development.

[18]  Michael B. Eisen,et al.  Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition , 2011, PLoS genetics.

[19]  Lior Pachter,et al.  Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species , 2010, PLoS biology.

[20]  Pierre Gönczy,et al.  A single amino acid can determine the DNA binding specificity of homeodomain proteins , 1989, Cell.

[21]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[22]  Thomas Gregor,et al.  Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network , 2013, Proceedings of the National Academy of Sciences.

[23]  R. MacKinnon,et al.  Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system , 2014, eLife.

[24]  Roger Brent,et al.  DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9 , 1989, Cell.

[25]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[26]  Julia Zeitlinger,et al.  Paused RNA polymerase II inhibits new transcriptional initiation , 2017, Nature Genetics.

[27]  Nikolaus Rajewsky,et al.  The Drosophila embryo at single-cell transcriptome resolution , 2017, Science.

[28]  Andrej Kosmrlj,et al.  How a protein searches for its site on DNA: the mechanism of facilitated diffusion , 2009 .

[29]  Luciano da Fontoura Costa,et al.  Gene Expression Noise in Spatial Patterning: hunchback Promoter Structure Affects Noise Amplitude and Distribution in Drosophila Segmentation , 2011, PLoS Comput. Biol..

[30]  Michael B. Eisen,et al.  Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene , 2018, bioRxiv.

[31]  Mustafa Mir,et al.  Dense Bicoid hubs accentuate binding along the morphogen gradient , 2017, bioRxiv.

[32]  Aleksandra M. Walczak,et al.  hunchback Promoters Can Readout Morphogenetic Positional Information in Less Than a Minute , 2019, bioRxiv.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  David W Tank,et al.  Measurement and perturbation of morphogen lifetime: effects on gradient shape. , 2011, Biophysical journal.

[35]  Stephen Butcher,et al.  Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo , 2011, PLoS genetics.

[36]  Aleksandra M. Walczak,et al.  Precision in a rush: Trade-offs between reproducibility and steepness of the hunchback expression pattern , 2018, bioRxiv.

[37]  Jeremy Gunawardena,et al.  Information Integration and Energy Expenditure in Gene Regulation , 2016, Cell.

[38]  Eugene W. Myers,et al.  Analysis of Cell Fate from Single-Cell Gene Expression Profiles in C. elegans , 2009, Cell.

[39]  Aleksandra M. Walczak,et al.  Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos , 2016, PLoS Comput. Biol..

[40]  Claude C. Warzecha,et al.  Ldb1 complexes: the new master regulators of erythroid gene transcription. , 2014, Trends in genetics : TIG.

[41]  C. Desplan,et al.  Bicoid functions without its TATA-binding protein-associated factor interaction domains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[43]  Claude Desplan,et al.  Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila , 1994, Cell.

[44]  A. Riggs,et al.  The lac represser-operator interaction , 1970 .

[45]  G. Raposo,et al.  BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes , 2016, Current Biology.

[46]  Michael Levine,et al.  Rapid Rates of Pol II Elongation in the Drosophila Embryo , 2017, Current Biology.

[47]  Tetsuya Nakamura,et al.  Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation , 2011, Nature Cell Biology.

[48]  Johan Elf,et al.  The lac Repressor Displays Facilitated Diffusion in Living Cells , 2012, Science.

[49]  Shawn C. Little,et al.  Diverse Spatial Expression Patterns Emerge from Unified Kinetics of Transcriptional Bursting , 2018, Cell.

[50]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[51]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[52]  Adam M. Corrigan,et al.  Author response: A continuum model of transcriptional bursting , 2016 .

[53]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.

[54]  Aleksandra M Walczak,et al.  3 minutes to precisely measure morphogen concentration , 2018, bioRxiv.

[55]  Hernan G. Garcia,et al.  Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning , 2013, Current Biology.

[56]  Shawn C. Little,et al.  Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity , 2013, Cell.

[57]  A. Durbin,et al.  A Dengue Vaccine , 2016, Cell.

[58]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.

[59]  R. Tjian,et al.  DNA Template and Activator-Coactivator Requirements for Transcriptional Synergism by Drosophila Bicoid , 1995, Science.

[60]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Riggs,et al.  The lac repressor-operator interaction. 3. Kinetic studies. , 1970, Journal of molecular biology.

[62]  Mustafa Mir,et al.  Author response: Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos , 2018 .

[63]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[64]  Mathieu Coppey,et al.  Modelling the Bicoid gradient , 2010, Development.

[65]  Aleksandra M. Walczak,et al.  New methods to image transcription in living fly embryos: the insights so far, and the prospects , 2016, Wiley interdisciplinary reviews. Developmental biology.

[66]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[67]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[68]  H. Jäckle,et al.  Cooperative DNA‐binding by Bicoid provides a mechanism for threshold‐dependent gene activation in the Drosophila embryo , 1998, The EMBO journal.

[69]  Tyler J. Gibson,et al.  Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. , 2019, Molecular cell.

[70]  Mariela D. Petkova,et al.  Optimal Decoding of Cellular Identities in a Genetic Network , 2016, Cell.