A dense ring of the trans-Neptunian object Quaoar outside its Roche limit
暂无分享,去创建一个
G. Bruno | A. Burdanov | W. Benz | E. Jehin | T. Wilson | I. Pagano | M. Gillon | Z. Benkhaldoun | J. de Wit | S. Littlefair | U. Kolb | C. Snodgrass | J. Lecacheux | J. L. Ortiz | V. Dhillon | T. Marsh | N. Hara | H. Salo | W. Beisker | B. Sicardy | J. Desmars | M. Assafin | R. Vieira-Martins | J. Camargo | F. Braga-Ribas | B. Morgado | G. Benedetti-Rossi | A. Gomes-Júnior | R. Boufleur | F. Rommel | T. de Santana | R. Sfair | F. Vachier | B. Holler | H. Floren | F. Jankowsky | A. Brandeker | D. Souami | R. Duffard | N. Morales | A. Collier-Cameron | D. Sebastian | P. Santos-Sanz | G. Olofsson | M. Ferrais | D. Herald | C. Pereira | M. Kretlow | D. Gault | S. Kerr | J. Broughton | R. Busuttil | J. Teng | W. Hanna | G. Margoti | E. Fernández-Valenzuela | J. Bradshaw | R. Langersek | P. Nosworthy
[1] J. Laskar,et al. A stellar occultation by the transneptunian object (50000) Quaoar observed by CHEOPS , 2022, Astronomy & Astrophysics.
[2] B. Carry,et al. Dynamics of the binary asteroid (379) Huenna , 2022, Icarus.
[3] B. Sicardy,et al. SORA: Stellar Occultation Reduction and Analysis , 2022, 2201.01799.
[4] C. M. Dubbeldam,et al. HiPERCAM: a quintuple-beam, high-speed optical imager on the 10.4-m Gran Telescopio Canarias , 2021, Monthly Notices of the Royal Astronomical Society.
[5] V. Kouprianov,et al. Refined physical parameters for Chariklo’s body and rings from stellar occultations observed between 2013 and 2020 , 2021, Astronomy & Astrophysics.
[6] R. Kotak,et al. Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.
[7] P. Thomas,et al. The small inner satellites of Saturn: Shapes, structures and some implications , 2020 .
[8] B. Sicardy. Resonances in Nonaxisymmetric Gravitational Potentials , 2020, The Astronomical Journal.
[9] J. Ortiz,et al. Database on detected stellar occultations by small outer Solar System objects , 2019, Journal of Physics: Conference Series.
[10] B. Sicardy,et al. Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea , 2018, Nature Astronomy.
[11] L. Esposito,et al. Cassini UVIS solar occultations by Saturn's F ring and the detection of collision-produced micron-sized dust , 2018 .
[12] F. Henry,et al. “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.
[13] G. Dudziński,et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation , 2017, Nature.
[14] J. Ortiz,et al. Size and Shape of Chariklo from Multi-epoch Stellar Occultations , 2017, 1708.08934.
[15] G. Carraro,et al. The Structure of Chariklo’s Rings from Stellar Occultations , 2017, 1706.00207.
[16] J. Ortiz,et al. Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations , 2015, 1509.08674.
[17] J. P. Moore,et al. A ring system detected around the Centaur (10199) Chariklo , 2014, Nature.
[18] P. Gaulme,et al. An exploration of Pluto’s environment through stellar occultations , 2014 .
[19] P. Nicholson,et al. The smallest particles in Saturn's A and C Rings , 2013, 1312.2927.
[20] A. Bouchez,et al. The mass, orbit, and tidal evolution of the Quaoar–Weywot system , 2012, 1211.1016.
[21] F. Marchis,et al. Determination of binary asteroid orbits with a genetic-based algorithm , 2012 .
[22] P. Thomas,et al. Saturn's Small Inner Satellites: Clues to Their Origins , 2007, Science.
[23] Heikki Salo,et al. Gravitational accretion of particles in Saturn's rings , 2004 .
[24] J. Ortiz,et al. Rotational brightness variations in Trans-Neptunian Object 50000 Quaoar , 2003 .
[25] P. Nicholson,et al. Saturn's F Ring: Kinematics and Particle Sizes from Stellar Occultation Studies , 2002 .
[26] S. Ida,et al. Angular Momentum Transfer in a Protolunar Disk , 2000, astro-ph/0108133.
[27] F. Poulet,et al. Saturn's Ring-Plane Crossings of August and November 1995: A Model for the New F-Ring Objects , 2000 .
[28] J. Makino,et al. Evolution of a Circumterrestrial Disk and Formation of a Single Moon , 1999 .
[29] J. Chambers. A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .
[30] Douglas P. Hamilton,et al. Circumplanetary Dust Dynamics: Effects of Solar Gravity, Radiation Pressure, Planetary Oblateness, and Electromagnetism , 1996 .
[31] H. Salo. Simulations of dense planetary rings. III. Self-gravitating identical particles. , 1995 .
[32] K. Ohtsuki. Capture Probability of Colliding Planetesimals: Dynamical Constraints on Accretion of Planets, Satellites, and Ring Particles , 1993 .
[33] J. Burns,et al. Charged particle depletion surrounding Saturn's F ring - Evidence for a moonlet belt? , 1988 .
[34] D. Lin,et al. Collisional properties of ice spheres at low impact velocities , 1988 .
[35] J. Elias,et al. Structure of the Uranian rings. I - Square-well model and particle-size constraints , 1984 .
[36] D. Lin,et al. Structure, stability and evolution of Saturn's rings , 1984, Nature.
[37] S. Tremaine,et al. The velocity dispersion in Saturn's rings , 1978 .