Automated segmentation of cortical layers in BigBrain reveals divergent cortical and laminar thickness gradients in sensory and motor cortices.

Large-scale in vivo neuroimaging datasets offer new possibilities for reliable, well-powered measures of interregional structural differences and biomarkers of pathological changes in a wide variety of neurological and psychiatric diseases. However, it has been impossible to determine the cortical layer or neurobiological processes causing these changes. We developed artificial neural networks to segment cortical and laminar surfaces in the BigBrain, a 3D histological model of the human brain, to test whether gradients of MRI thickness in sensory and motor processing cortices were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Identifying common gradients of cortical organisation enables the formation of mechanistic links between microstructural, macrostructural and functional cortical parameters. In our fully segmented layered model of the cerebral isocortex, we found that histological thickness corroborated MRI thickness gradients in sensory cortices but was the inverse from those reported in fronto-motor cortices, with layers III, V and VI being the primary drivers of these thickness gradients. Our laminar atlas creates a link between single-neuron morphological changes, mesoscale cortical layers and macroscale cortical thickness, and our findings suggest that across multiple measurement domains, the primary motor cortex should not be indiscriminately grouped with primary sensory areas.

[1]  Martijn P. van den Heuvel,et al.  An MRI Von Economo – Koskinas atlas , 2016, NeuroImage.

[2]  D. Schwarzkopf,et al.  Neural Population Tuning Links Visual Cortical Anatomy to Human Visual Perception , 2015, Neuron.

[3]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[4]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[5]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[6]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[7]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[8]  Katrin Amunts,et al.  Gender-Specific Left–Right Asymmetries in Human Visual Cortex , 2007, The Journal of Neuroscience.

[9]  H. Barbas,et al.  Motor cortex layer 4: less is more , 2015, Trends in Neurosciences.

[10]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Alan C. Evans,et al.  Where in-vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET , 2011, NeuroImage.

[12]  H. Haug,et al.  Remarks on the determination and significance of the gray cell coefficient , 1956 .

[13]  Anders M. Dale,et al.  CORTICAL THICKNESS AND SUBCORTICAL VOLUMES IN SCHIZOPHRENIA AND BIPOLAR DISORDER , 2010, Schizophrenia Research.

[14]  Katrin Amunts,et al.  Cytoarchitecture and Maps of the Human Cerebral Cortex , 2015 .

[15]  Paolo Calabresi,et al.  Anatomy of the cortex. Statistics and geometry. Studies of brain function: Vol. 18. - V. Braitenberg and A. Schuz (Springer, Berlin, 1991, ix + 249 pp., 85 figs., DM 58.00, ISBN 3-540-53233-1) , 1991 .

[16]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  D. Collins,et al.  Atrophy specific MRI brain template for Alzheimer's disease and mild cognitive impairment , 2011, Alzheimer's & Dementia.

[18]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[19]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[20]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[21]  Ruben Schmidt,et al.  Linking Macroscale Graph Analytical Organization to Microscale Neuroarchitectonics in the Macaque Connectome , 2014, The Journal of Neuroscience.

[22]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[23]  Julia M. Huntenburg,et al.  Large-Scale Gradients in Human Cortical Organization , 2018, Trends in Cognitive Sciences.

[24]  Nick F. Ramsey,et al.  Detailed somatotopy in primary motor and somatosensory cortex revealed by Gaussian population receptive fields , 2018, NeuroImage.

[25]  Claus C. Hilgetag,et al.  A Predictive Structural Model of the Primate Connectome , 2015, Scientific Reports.

[26]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[27]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Ichiro Fujita,et al.  Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology , 2014, Front. Neuroanat..

[29]  K. Amunts,et al.  Anatomical Basis for Functional Specialization , 2015 .

[30]  Nicola Palomero-Gallagher,et al.  Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas , 2017, NeuroImage.

[31]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[32]  B. Dubois,et al.  Rostro-caudal Architecture of the Frontal Lobes in Humans , 2016, Cerebral cortex.

[33]  Alan C. Evans,et al.  BigBrain: initial tissue classification and surface extraction , 2014 .

[34]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[35]  K. Zilles,et al.  Cortical Gradients and Laminar Projections in Mammals , 2018, Trends in Neurosciences.

[36]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[37]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[38]  Alan C. Evans,et al.  Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. , 2004, Cerebral cortex.

[39]  Antoine Lutti,et al.  Discrimination of cortical laminae using MEG , 2014, NeuroImage.

[40]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[41]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[42]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[43]  Nikolaus Weiskopf,et al.  In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex , 2017, NeuroImage.

[44]  Alan C. Evans,et al.  Mapping Cortical Laminar Structure in the 3D BigBrain , 2018, Cerebral cortex.

[45]  K. Zilles,et al.  Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex , 2017, Front. Neuroanat..

[46]  K. Uğurbil,et al.  fMRI: From Nuclear Spins to Brain Functions , 2015, Biological Magnetic Resonance.

[47]  Katrin Amunts,et al.  Segregation and Wiring in the Brain , 2012, Science.

[48]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[49]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[50]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[51]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[52]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[53]  M G Rosa,et al.  Cellular heterogeneity in cerebral cortex: A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey , 1999, The Journal of comparative neurology.

[54]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[55]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[56]  T. Crow,et al.  Multiple markers of cortical morphology reveal evidence of supragranular thinning in schizophrenia , 2016, Translational Psychiatry.

[57]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[58]  A. Evans,et al.  Assessing neuronal density in peri‐infarct cortex with PET: Effects of cortical topology and partial volume correction , 2016, Human brain mapping.

[59]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[60]  G. Elston,et al.  Pyramidal Cells, Patches, and Cortical Columns: a Comparative Study of Infragranular Neurons in TEO, TE, and the Superior Temporal Polysensory Area of the Macaque Monkey , 2000, The Journal of Neuroscience.

[61]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[62]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[63]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[64]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[65]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[66]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[67]  J. L. Conel The cortex of the newborn , 1939 .