Current trends and future challenges of electrolytes for sodium-ion batteries

[1]  P. Johansson,et al.  Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries , 2015 .

[2]  Kehan Yu,et al.  A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries , 2015 .

[3]  D. Macfarlane,et al.  Gelled ionic liquid sodium ion conductors for sodium batteries , 2015 .

[4]  L. Shaw,et al.  Advances and challenges of sodium ion batteries as post lithium ion batteries , 2015 .

[5]  Shan Jiang,et al.  Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte , 2015 .

[6]  Leigang Xue,et al.  Ionic Liquid Redox Catholyte for High Energy Efficiency, Low‐Cost Energy Storage , 2015 .

[7]  J. Goodenough,et al.  A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodium‐Ion Batteries , 2015 .

[8]  B. Hwang,et al.  Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries , 2015 .

[9]  A. Hayashi,et al.  Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique , 2015 .

[10]  Chung‐Jen Tseng,et al.  Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes , 2015 .

[11]  Kazuhiko Matsumoto,et al.  Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries , 2015 .

[12]  K. Shinozaki,et al.  Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12 , 2015 .

[13]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[14]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[15]  Zaiping Guo,et al.  3D Hierarchical Porous α‐Fe2O3 Nanosheets for High‐Performance Lithium‐Ion Batteries , 2015 .

[16]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[17]  R. Hagiwara,et al.  Na[FSA]-[C 3 C 1 pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature , 2014 .

[18]  Hui Wu,et al.  Exceptional Superionic Conductivity in Disordered Sodium Decahydro‐closo‐decaborate , 2014, Advanced materials.

[19]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[20]  Jeng‐Kuei Chang,et al.  Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. , 2014, ACS applied materials & interfaces.

[21]  S. Sen,et al.  Fast Na-Ion Conduction in a Chalcogenide Glass–Ceramic in the Ternary System Na2Se–Ga2Se3–GeSe2 , 2014 .

[22]  Haibin Wang,et al.  Nafion membranes as electrolyte and separator for sodium-ion battery , 2014 .

[23]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[24]  D. Butt,et al.  In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications , 2014 .

[25]  B. Scrosati,et al.  Sodium-conducting ionic liquid-based electrolytes , 2014 .

[26]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[27]  Jeng‐Kuei Chang,et al.  Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes , 2014 .

[28]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[29]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[30]  Xiongwei Wu,et al.  An aqueous rechargeable battery based on zinc anode and Na(0.95)MnO2. , 2014, Chemical communications.

[31]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[32]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[33]  D. Macfarlane,et al.  Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications , 2013 .

[34]  N. H. Zainol,et al.  Studies on Sodium Ion Conducting Gel Polymer Electrolytes , 2013 .

[35]  Shinji Inazawa,et al.  NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range , 2013 .

[36]  Zurina Zainal Abidin,et al.  Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation , 2013 .

[37]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[38]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[39]  Xufeng Zhou,et al.  New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes , 2013, Scientific Reports.

[40]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[41]  T. Komatsu,et al.  Triclinic Na2−xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery , 2013 .

[42]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[43]  Shingo Matsumoto,et al.  Development of a Sodium Ion Secondary Battery , 2013 .

[44]  N. B. Singh,et al.  Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries , 2012 .

[45]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[46]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[47]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[48]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[49]  R. Hagiwara,et al.  Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries , 2012 .

[50]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[51]  A. Chandra,et al.  Na+ Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes , 2012 .

[52]  M. Egashira,et al.  Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid , 2011 .

[53]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[54]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[55]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[56]  S. Hashmi,et al.  Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles , 2010 .

[57]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[58]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[59]  Z. Osman,et al.  A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes , 2010 .

[60]  A. K. Sharma,et al.  Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications , 2009 .

[61]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[62]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[63]  C. Angell,et al.  Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. , 2007, Accounts of chemical research.

[64]  A. K. Sharma,et al.  Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications , 2007 .

[65]  A. K. Sharma,et al.  Structural, Electrical and Optical Characterization of Pure and Doped Poly (Vinyl Alcohol) (PVA) Polymer Electrolyte Films , 2007 .

[66]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[67]  Ruoyuan Tao,et al.  Application of mix-salts composed of lithium borate and lithium aluminate in PEO-based polymer electrolytes , 2005 .

[68]  C. Chiappe,et al.  The effect of the anion on the physical properties of trihalide-based N,N-dialkylimidazolium ionic liquids. , 2005, Organic & biomolecular chemistry.

[69]  R. O. Fuentes,et al.  Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors , 2005 .

[70]  S. Komornicki,et al.  Synthesis and properties of Nasicon-type materials , 2005 .

[71]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[72]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[73]  H. Upadhyaya,et al.  Polyethylene oxide based sodium ion conducting composite polymer electrolytes dispersed with Na2SiO3 , 1999 .

[74]  A. Arof,et al.  Polymer batteries with chitosan electrolyte mixed with sodium perchlorate , 1996 .

[75]  S. Chandra,et al.  Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6 , 1995 .

[76]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[77]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[78]  F. H. Hurley,et al.  Electrodeposition of Metals from Fused Quaternary Ammonium Salts , 1951 .