APPROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES

[1]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[2]  Mihir Bhattacharya Empirical Properties of the Black-Scholes Formula Under Ideal Conditions , 1980, Journal of Financial and Quantitative Analysis.

[3]  L. J. Merville,et al.  Tests of the Black-Scholes and Cox Call Option Valuation Models , 1980 .

[4]  Michael J. Brennan,et al.  The Pricing of Contingent Claims in Discrete Time Models , 1979 .

[5]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[6]  Gary L. Gastineau The stock options manual , 1979 .

[7]  Robert A. Jarrow,et al.  An autoregressive jump process for common stock returns , 1977 .

[8]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[9]  D. C. Schleher,et al.  Generalized Gram-Charlier series with application to the sum of log-normal variates (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[10]  Michael Parkinson,et al.  Option Pricing: The American Put , 1977 .

[11]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[12]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[13]  F. Black Fact and Fantasy in the Use of Options , 1975 .

[14]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[15]  Barr Rosenberg. The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices , 1972 .

[16]  R. L. Mitchell Permanence of the Log-Normal Distribution* , 1968 .