Genetic algorithm-neural network : feature extraction for bioinformatics data

With the advance of gene expression data in the bioinformatics field, the questions which frequently arise, for both computer and medical scientists, are which genes are significantly involved in discriminating cancer classes and which genes are significant with respect to a specific cancer pathology. Numerous computational analysis models have been developed to identify informative genes from the microarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the misconception of the objectives of microarray study. Furthermore, the application of various preprocessing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the integrity of the findings has been compromised by the improper use of techniques and the ill-conceived objectives of the study. This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology. The proposed method can efficiently extract the informative genes from the original data set and this has reduced the gene variability errors incurred by the preprocessing techniques. The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting informative features from a high dimensional and highly complex data set, rather than to improve classification results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context of feature extraction. Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour development and the results show that the genes respond to different stages of tumourigenesis (i.e. different fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the proposed model is validated based on the expected results in the synthetic data sets. In addition, two bioassay data have been used to examine the efficiency of the proposed model to extract significant features from the large, imbalanced and multiple data representation bioassay data.

[1]  Amanda C. Schierz Virtual screening of bioassay data , 2009, J. Cheminformatics.

[2]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[3]  Keith Phalp,et al.  Innovative Hybridisation of Genetic Algorithms and Neural Networks in Detecting Marker Genes for Leukaemia Cancer , 2009 .

[4]  Girija Chetty,et al.  Multiclass Microarray Gene Expression Analysis Based on Mutual Dependency Models , 2009, PRIB.

[5]  Dong-Ling Tong,et al.  Hybridising Genetic Algorithm-Neural Network (GANN) in marker genes detection , 2009, 2009 International Conference on Machine Learning and Cybernetics.

[6]  G. Saed,et al.  The role of myeloperoxidase in the pathogenesis of postoperative adhesions , 2009, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[7]  F. Sotgia,et al.  Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. , 2009, The American journal of pathology.

[8]  A. Osareh,et al.  Classification and Diagnostic Prediction of Cancers Using Gene Microarray Data Analysis , 2009 .

[9]  D. Malkin,et al.  Expression of Insulin-Like Growth Factor Pathway Proteins in Rhabdomyosarcoma: IGF-2 Expression is Associated with Translocation-Negative Tumors , 2009, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[10]  Nathan Brown,et al.  Chemoinformatics—an introduction for computer scientists , 2009, CSUR.

[11]  A. Rajwanshi,et al.  Malignant small round cell tumors , 2009, Journal of cytology.

[12]  A. Akdoğan,et al.  Serum adenosine deaminase activities during acute attacks and attack-free periods of familial Mediterranean fever. , 2009, European journal of internal medicine.

[13]  John M. Maris,et al.  Identification of ALK as a major familial neuroblastoma predisposition gene , 2008, Nature.

[14]  Mohsen Nasseri,et al.  Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network , 2008, Expert Syst. Appl..

[15]  Ali Mohebbi,et al.  Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers. , 2008, Journal of hazardous materials.

[16]  Jin Cheng,et al.  Reliability analysis of structures using artificial neural network based genetic algorithms , 2008 .

[17]  Hugh M. Cartwright,et al.  Using Artificial Intelligence in Chemistry and Biology: A Practical Guide , 2008 .

[18]  Jing Zhang,et al.  Systematic benchmarking of microarray data feature extraction and classification , 2008, Int. J. Comput. Math..

[19]  Jun Yokota,et al.  Frequent BRG1/SMARCA4–inactivating mutations in human lung cancer cell lines , 2008, Human mutation.

[20]  Stephen L. Lessnick,et al.  EWS/FLI Mediates Transcriptional Repression via NKX2.2 during Oncogenic Transformation in Ewing's Sarcoma , 2008, PloS one.

[21]  R. Clarke,et al.  Approaches to working in high-dimensional data spaces: gene expression microarrays , 2008, British Journal of Cancer.

[22]  M. Daumer,et al.  Evaluating Microarray-based Classifiers: An Overview , 2008, Cancer informatics.

[23]  S. Goñi,et al.  Prediction of foods freezing and thawing times: Artificial neural networks and genetic algorithm approach , 2008 .

[24]  Dimitris Kanellopoulos,et al.  Data Preprocessing for Supervised Leaning , 2007 .

[25]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[26]  Massimiliano Barletta,et al.  Modelling of electrostatic fluidized bed (EFB) coating process using artificial neural networks , 2007, Eng. Appl. Artif. Intell..

[27]  Miguel Rocha,et al.  A platform for the selection of genes in DNA microarraydata using evolutionary algorithms , 2007, GECCO '07.

[28]  S. Kotsiantis Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[29]  R. Weksberg,et al.  Growth Regulation, Imprinted Genes, and Chromosome 11p15.5 , 2007, Pediatric Research.

[30]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[31]  Ben S. Gerber,et al.  Predictors of urinary tract infection based on artificial neural networks and genetic algorithms , 2007, Int. J. Medical Informatics.

[32]  Zi X. Chen,et al.  CytCD79a expression in acute leukemia with t(8;21): biphenotypic or myeloid leukemia? , 2007, Cancer genetics and cytogenetics.

[33]  Loris Nanni,et al.  Ensemblator: An ensemble of classifiers for reliable classification of biological data , 2007, Pattern Recognit. Lett..

[34]  Gregory Levitin,et al.  Robust recurrent neural network modeling for software fault detection and correction prediction , 2007, Reliab. Eng. Syst. Saf..

[35]  J. Khan,et al.  Diagnosis of the small round blue cell tumors using multiplex polymerase chain reaction. , 2007, The Journal of molecular diagnostics : JMD.

[36]  Panos M. Pardalos,et al.  Quality assessment of gene selection in microarray data , 2007, Optim. Methods Softw..

[37]  A. Dupuy,et al.  Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. , 2007, Journal of the National Cancer Institute.

[38]  Wei Xie,et al.  Accurate Cancer Classification Using Expressions of Very Few Genes , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[39]  David S. Wishart,et al.  Applications of Machine Learning in Cancer Prediction and Prognosis , 2006, Cancer informatics.

[40]  S. Mocellin,et al.  Principles of gene microarray data analysis. , 2007, Advances in experimental medicine and biology.

[41]  D. Wunsch,et al.  Multiclass Cancer Classification Using Semisupervised Ellipsoid ARTMAP and Particle Swarm Optimization with Gene Expression Data , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[42]  Sung-Bae Cho,et al.  Cancer classification using ensemble of neural networks with multiple significant gene subsets , 2007, Applied Intelligence.

[43]  Nikhil R. Pal,et al.  Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering , 2007, BMC Bioinformatics.

[44]  Min-Yuan Cheng,et al.  A genetic-fuzzy-neuro model encodes FNNs using SWRM and BRM , 2006, Eng. Appl. Artif. Intell..

[45]  Vitoantonio Bevilacqua,et al.  Genetic Algorithm and Neural Network Based Classification in Microarray Data Analysis with Biological Validity Assessment , 2006, ICIC.

[46]  Ru-Sheng Liu,et al.  Multiclass microarray data classification using GA/ANN method , 2006 .

[47]  Ian B. Jeffery,et al.  Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data , 2006, BMC Bioinformatics.

[48]  Shuguang Huang,et al.  Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data , 2006, BMC Genomics.

[49]  Isaac Engel,et al.  Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Emad A. M. Andrews Shenouda A Quantitative Comparison of Different MLP Activation Functions in Classification , 2006, ISNN.

[51]  E. Tholouli,et al.  Comparison of gene-expression profiles in parallel bone marrow and peripheral blood samples in acute myeloid leukaemia by real-time polymerase chain reaction , 2006, Journal of Clinical Pathology.

[52]  Tom Froese,et al.  Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms , 2006, Pattern Recognit. Lett..

[53]  Li Shen,et al.  Reducing multiclass cancer classification to binary by output coding and SVM , 2006, Comput. Biol. Chem..

[54]  C. Dunphy,et al.  Immunoreactivity of MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone marrow clot and core specimens of acute myeloid leukemias and myelodysplastic syndromes. , 2006, Archives of pathology & laboratory medicine.

[55]  Mohammad Hossein Fatemi,et al.  Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks , 2006 .

[56]  Musa H. Asyali,et al.  Gene Expression Profile Classification: A Review , 2006 .

[57]  Johann Gasteiger,et al.  Chemoinformatics: a new field with a long tradition , 2006, Analytical and bioanalytical chemistry.

[58]  Vitoantonio Bevilacqua,et al.  Genetic Algorithms and Artificial Neural Networks in Microarray Data Analysis: a Distributed Approach , 2006 .

[59]  Michael Q. Zhang,et al.  Profiling alternatively spliced mRNA isoforms for prostate cancer classification , 2006, BMC Bioinformatics.

[60]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[61]  Daijin Ko,et al.  Gene function classification using NCI-60 cell line gene expression profiles , 2005, Comput. Biol. Chem..

[62]  Alan R. Dabney BIOINFORMATICS Classification of Microarrays to Nearest Centroids , 2022 .

[63]  Wei Chu,et al.  Biomarker discovery in microarray gene expression data with Gaussian processes , 2005, Bioinform..

[64]  Blaz Zupan,et al.  Conquering the Curse of Dimensionality in Gene Expression Cancer Diagnosis: Tough Problem, Simple Models , 2005, AIME.

[65]  M. Teitell,et al.  T Cell Leukemia-1 Modulates TCR Signal Strength and IFN-γ Levels through Phosphatidylinositol 3-Kinase and Protein Kinase C Pathway Activation1 , 2005, The Journal of Immunology.

[66]  D. Huntsman,et al.  Podocalyxin: a marker of blasts in acute leukemia. , 2005, American journal of clinical pathology.

[67]  J. Khoury Ewing Sarcoma Family of Tumors , 2005, Advances in anatomic pathology.

[68]  David P. Kreil,et al.  Robotic spotting of cDNA and oligonucleotide microarrays. , 2005, Trends in biotechnology.

[69]  Stephen T. C. Wong,et al.  Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection , 2005, Journal of biomedicine & biotechnology.

[70]  Byung Ro Moon,et al.  Nonlinear feature extraction using a neuro genetic hybrid , 2005, GECCO '05.

[71]  Xuefeng Bruce Ling,et al.  Multiclass cancer classification and biomarker discovery using GA-based algorithms , 2005, Bioinform..

[72]  Brijesh Verma,et al.  Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection , 2005, Pattern Recognit. Lett..

[73]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[74]  Xin Zhou,et al.  LS Bound based gene selection for DNA microarray data , 2005, Bioinform..

[75]  M. Prevost,et al.  Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. , 2005, Blood.

[76]  Edward R. Dougherty,et al.  GENE SELECTION USING LOGISTIC REGRESSIONS BASED ON AIC, BIC AND MDL CRITERIA , 2005 .

[77]  Ioannis P. Androulakis,et al.  Selecting maximally informative genes , 2005, Comput. Chem. Eng..

[78]  Hongyu Zhao,et al.  A semiparametric approach for marker gene selection based on gene expression data , 2005, Bioinform..

[79]  Edward Keedwell,et al.  Artificial Neural Networks for Reducing the Dimensionality of Gene Expression Data , 2005 .

[80]  Gene H. Golub,et al.  Missing value estimation for DNA microarray gene expression data: local least squares imputation , 2005, Bioinform..

[81]  Hiroyuki Honda,et al.  Construction of robust prognostic predictors by using projective adaptive resonance theory as a gene filtering method , 2005, Bioinform..

[82]  Constantin F. Aliferis,et al.  A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..

[83]  Jae Won Lee,et al.  An extensive comparison of recent classification tools applied to microarray data , 2004, Comput. Stat. Data Anal..

[84]  R Spang,et al.  Molecular Diagnosis , 2005, Methods of Information in Medicine.

[85]  J. Stuart Aitken,et al.  Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes , 2005, BMC Bioinformatics.

[86]  Xiaoxing Liu,et al.  An Entropy-based gene selection method for cancer classification using microarray data , 2005, BMC Bioinformatics.

[87]  Robert G. Beiko,et al.  GANN: Genetic algorithm neural networks for the detection of conserved combinations of features in DNA , 2005, BMC Bioinformatics.

[88]  J. Downing,et al.  Gene Expression Profiling of Pediatric Acute Myelogenous Leukemia Materials and Methods , 2022 .

[89]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[90]  Tao Li,et al.  A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression , 2004, Bioinform..

[91]  Qing-Rong Chen,et al.  Prediction of Clinical Outcome Using Gene Expression Profiling and Artificial Neural Networks for Patients with Neuroblastoma , 2004, Cancer Research.

[92]  D. Horsman,et al.  Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21) , 2004, Modern Pathology.

[93]  Zheng Niu,et al.  Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification , 2004, Future Gener. Comput. Syst..

[94]  Tianzi Jiang,et al.  A combinational feature selection and ensemble neural network method for classification of gene expression data , 2004, BMC Bioinformatics.

[95]  T. Golub,et al.  Genomic approaches to hematologic malignancies. , 2004, Blood.

[96]  Y. Pekarsky,et al.  Tcl1 as a model for lymphomagenesis. , 2004, Hematology/oncology clinics of North America.

[97]  Lucila Ohno-Machado,et al.  A primer on gene expression and microarrays for machine learning researchers , 2004, J. Biomed. Informatics.

[98]  Lucila Ohno-Machado,et al.  Multivariate selection of genetic markers in diagnostic classification , 2004, Artif. Intell. Medicine.

[99]  Loris McGavran,et al.  Nonpositive terminal deoxynucleotidyl transferase in pediatric precursor B-lymphoblastic leukemia. , 2004, American journal of clinical pathology.

[100]  Pedro Larrañaga,et al.  Filter versus wrapper gene selection approaches in DNA microarray domains , 2004, Artif. Intell. Medicine.

[101]  Julio J. Valdés,et al.  Gene Discovery in Leukemia Revisited: A Computational Intelligence Perspective , 2004, IEA/AIE.

[102]  Y. Matsuo,et al.  Diagnostic importance of CD179a/b as markers of precursor B-cell lymphoblastic lymphoma , 2004, Modern Pathology.

[103]  Hua Song,et al.  [The expression of CD19 in 210 cases of childhood acute leukemia and its significance]. , 2004, Zhonghua er ke za zhi = Chinese journal of pediatrics.

[104]  Hans Lehrach,et al.  A comparison of oligonucleotide and cDNA-based microarray systems. , 2004, Physiological genomics.

[105]  Joaquín Dopazo,et al.  Using a Genetic Algorithm and a Perceptron for Feature Selection and Supervised Class Learning in DNA Microarray Data , 2003, Artificial Intelligence Review.

[106]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[107]  I. Yang,et al.  Multi-platform, multi-site, microarray-based human tumor classification. , 2004, The American journal of pathology.

[108]  R. Brdička,et al.  Array-based analysis of gene expression in childhood acute lymphoblastic leukemia. , 2004, Leukemia research.

[109]  Giuseppe Nunnari Modelling air pollution time-series by using wavelet functions and genetic algorithms , 2004, Soft Comput..

[110]  Constantin F. Aliferis,et al.  Methods for Multi-Category Cancer Diagnosis from Gene Expression Data: A Comprehensive Evaluation to Inform Decision Support System Development , 2004, MedInfo.

[111]  Wei Du,et al.  Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines , 2003, FEBS letters.

[112]  Eivind Hovig,et al.  Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data , 2003, BMC Bioinformatics.

[113]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.

[114]  Shin Ishii,et al.  A Bayesian missing value estimation method for gene expression profile data , 2003, Bioinform..

[115]  R Simon,et al.  Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data , 2003, British Journal of Cancer.

[116]  Jin Hyun Park,et al.  New gene selection method for classification of cancer subtypes considering within‐class variation , 2003, FEBS letters.

[117]  Richard Baumgartner,et al.  Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions , 2003, Bioinform..

[118]  Dale L. Wilson,et al.  New Normalization Methods for CDNA Microarray Data , 2003, Bioinform..

[119]  Yoonkyung Lee,et al.  Classification of Multiple Cancer Types by Multicategory Support Vector Machines Using Gene Expression Data , 2003, Bioinform..

[120]  Jiawei Han,et al.  Cancer classification using gene expression data , 2003, Inf. Syst..

[121]  Nikola K. Kasabov,et al.  Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue , 2003, Artif. Intell. Medicine.

[122]  Ed Keedwell,et al.  Genetic Algorithms for Gene Expression Analysis , 2003, EvoWorkshops.

[123]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[124]  H S Cho,et al.  cDNA Microarray Data Based Classification of Cancers Using Neural Networks and Genetic Algorithms , 2003 .

[125]  D. Stekel Microarray Bioinformatics: Microarrays: Making Them and Using Them , 2003 .

[126]  Dov Stekel Microarray Bioinformatics: Data Standards, Storage and Sharing , 2003 .

[127]  Scott L. Zeger,et al.  The Analysis of Gene Expression Data: An Overview of Methods and Software , 2003 .

[128]  M. Radmacher,et al.  Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.

[129]  C. Hayter Cancer: "The worst scourge of civilized mankind". , 2003, Canadian bulletin of medical history = Bulletin canadien d'histoire de la medecine.

[130]  A. Simon,et al.  Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. , 2003, The New England journal of medicine.

[131]  Sung-Bae Cho,et al.  Machine Learning in DNA Microarray Analysis for Cancer Classification , 2003, APBC.

[132]  Patrick Tan,et al.  Genetic algorithms applied to multi-class prediction for the analysis of gene expression data , 2003, Bioinform..

[133]  M. Maloof Learning When Data Sets are Imbalanced and When Costs are Unequal and Unknown , 2003 .

[134]  J. M. Deutsch,et al.  Evolutionary algorithms for finding optimal gene sets in microarray prediction , 2003, Bioinform..

[135]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[136]  Henrik Boström,et al.  Rule Induction for Classification of Gene Expression Array Data , 2002, PKDD.

[137]  J. Choe,et al.  SWI/SNF Complex Interacts with Tumor Suppressor p53 and Is Necessary for the Activation of p53-mediated Transcription* , 2002, The Journal of Biological Chemistry.

[138]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[140]  T. Golub,et al.  DNA microarrays in clinical oncology. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[141]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[142]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[143]  Mesut Remzi,et al.  Novel artificial neural network for early detection of prostate cancer. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[144]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[145]  F. Valafar Pattern Recognition Techniques in Microarray Data Analysis : A Survey , 2002 .

[146]  Byoung-Tak Zhang,et al.  Applying Machine Learning Techniques to Analysis of Gene Expression Data: Cancer Diagnosis , 2002 .

[147]  T. H. Bø,et al.  New feature subset selection procedures for classification of expression profiles , 2002, Genome Biology.

[148]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[149]  Kay Hofmann,et al.  Microarray Probe Selection Strategies , 2001, Briefings Bioinform..

[150]  Thomas A. Darden,et al.  Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method , 2001, Bioinform..

[151]  A. Levine,et al.  Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. , 2001, Combinatorial chemistry & high throughput screening.

[152]  J. M. Deutsch,et al.  Algorithm for Finding Optimal Gene Sets in Microarray Prediction , 2001, physics/0108011.

[153]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[154]  M. Basu,et al.  Application of neural network to gene expression data for cancer classification , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[155]  J. Niland,et al.  Myeloperoxidase immunoreactivity in adult acute lymphoblastic leukemia. , 2001, American journal of clinical pathology.

[156]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[157]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[158]  Sayan Mukherjee,et al.  Molecular classification of multiple tumor types , 2001, ISMB.

[159]  Wentian Li,et al.  How Many Genes are Needed for a Discriminant Microarray Data Analysis , 2001, physics/0104029.

[160]  J. Strauchen Indolent T-Lymphoblastic Proliferation: Report of a Case With an 11-Year History and Association With Myasthenia Gravis , 2001, The American journal of surgical pathology.

[161]  Jasmina Arifovic,et al.  Using genetic algorithms to select architecture of a feedforward artificial neural network , 2001 .

[162]  Randall S. Sexton,et al.  Reliable classification using neural networks: a genetic algorithm and backpropagation comparison , 2000, Decis. Support Syst..

[163]  Jatinder N. D. Gupta,et al.  Comparative evaluation of genetic algorithm and backpropagation for training neural networks , 2000, Inf. Sci..

[164]  Ingoo Han,et al.  Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index , 2000 .

[165]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[166]  Rithy K. Roth,et al.  Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays , 2000, Nature Biotechnology.

[167]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[168]  W. Vach,et al.  On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. , 2000, Statistics in medicine.

[169]  J. Cervera,et al.  Cutaneous promyelocytic sarcoma at sites of vascular access and marrow aspiration. A characteristic localization of chloromas in acute promyelocytic leukemia? , 2000, Haematologica.

[170]  F. Busetti Genetic algorithms overview , 2000 .

[171]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[172]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[173]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[174]  Tom M. Mitchell,et al.  Does Machine Learning Really Work? , 1997, AI Mag..

[175]  Wei Zhou,et al.  Characterization of the Yeast Transcriptome , 1997, Cell.

[176]  Richard Dybowski,et al.  Prediction of outcome in the critically ill using an artificial neural network synthesised by a genetic algorithm , 1996 .

[177]  C. Denny,et al.  A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. , 1995, Oncogene.

[178]  P. Sorensen,et al.  A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS–family transcription factor, ERG , 1994, Nature Genetics.

[179]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[180]  Kenneth A. De Jong,et al.  An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms , 1990, PPSN.

[181]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[182]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[183]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[184]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[185]  K. De Jong Learning with Genetic Algorithms: An Overview , 1988 .

[186]  A. Tammar Introduction to the Cellular and Molecular Biology of Cancer , 1987 .

[187]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .