An adaptive finite element method with asymptotic saturation for eigenvalue problems
暂无分享,去创建一个
Carsten Carstensen | Joscha Gedicke | Volker Mehrmann | Agnieszka Miedlar | V. Mehrmann | C. Carstensen | A. Miedlar | J. Gedicke
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[3] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[4] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[5] Luka Grubisic,et al. On estimators for eigenvalue/eigenvector approximations , 2009, Math. Comput..
[6] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[7] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[8] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[9] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[10] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[11] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[12] Volker Mehrmann,et al. Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..
[13] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[14] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[15] L. Evans,et al. Partial Differential Equations , 1941 .
[16] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..
[17] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[18] Klaus Neymeyr,et al. A posteriori error estimation for elliptic eigenproblems , 2002, Numer. Linear Algebra Appl..