An adaptive finite element method with asymptotic saturation for eigenvalue problems

This paper discusses adaptive finite element methods for the solution of elliptic eigenvalue problems associated with partial differential operators. An adaptive method based on nodal-patch refinement leads to an asymptotic error reduction property for the computed sequence of simple eigenvalues and eigenfunctions. This justifies the use of the proven saturation property for a class of reliable and efficient hierarchical a posteriori error estimators. Numerical experiments confirm that the saturation property is present even for very coarse meshes for many examples; in other cases the smallness assumption on the initial mesh may be severe.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[3]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[4]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[5]  Luka Grubisic,et al.  On estimators for eigenvalue/eigenvector approximations , 2009, Math. Comput..

[6]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[12]  Volker Mehrmann,et al.  Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..

[13]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[14]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[15]  L. Evans,et al.  Partial Differential Equations , 1941 .

[16]  Carsten Carstensen,et al.  An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  Klaus Neymeyr,et al.  A posteriori error estimation for elliptic eigenproblems , 2002, Numer. Linear Algebra Appl..