Analysis of a two-layer cloud system with RAMS model and comparison to airborne observations

[1]  G. Boer Observations and cloud-resolving simulations of Arctic stratus , 2006 .

[2]  G. Kallos,et al.  Some considerations on the airborne cloud microphysical probing , 2006 .

[3]  G. Kallos,et al.  An investigation of cold cloud formation with a three‐dimensional model with explicit microphysics , 2003 .

[4]  H. Guan,et al.  Comparison of Three Cloud Forecast Schemes with In Situ Aircraft Measurements , 2002 .

[5]  Mark M. Wheeler,et al.  Verification of High-Resolution RAMS Forecasts over East-Central Florida during the 1999 and 2000 Summer Months , 2002 .

[6]  V. Larson,et al.  Observed Microphysical Structure of Midlevel, Mixed-Phase Clouds , 2002 .

[7]  Bryan A. Baum,et al.  The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .

[8]  Brad Baker,et al.  An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE , 2001 .

[9]  Taneil Uttal,et al.  Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements , 2001 .

[10]  H. Guan,et al.  Verification of Supercooled Cloud Water Forecasts with In Situ Aircraft Measurements , 2001 .

[11]  W. Cotton,et al.  Radiative Effects on the Diffusional Growth of Ice Particles in Cirrus Clouds , 2000 .

[12]  J. Curry,et al.  Cloud Resolving Simulations of Mixed-Phase Arctic Stratus Observed during BASE: Sensitivity to Concentration of Ice Crystals and Large-Scale Heat and Moisture Advection , 2000 .

[13]  Roger A. Pielke,et al.  Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling , 2000 .

[14]  Z. Levin,et al.  On the cloud microphysical processes during the November 2, 1994 hazardous storm in the southeastern Mediterranean as simulated with a mesoscale model , 2000 .

[15]  W. Cotton,et al.  Large Eddy Simulation of Shallow Cumulus Convection during BOMEX: Sensitivity to Microphysics and Radiation , 2000 .

[16]  W. Cotton,et al.  Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds , 1999 .

[17]  William R. Cotton,et al.  Multiscale Evolution of a Derecho-Producing Mesoscale Convective System , 1998 .

[18]  S. K. Rinard,et al.  Marine Forecasting at the 1996 Centennial Olympic Games , 1998 .

[19]  B. Stevens,et al.  A critique of one- and two-dimensional models of boundary layer clouds with a binned representations of drop microphysics , 1998 .

[20]  Zaphiris Christidis,et al.  Local-Domain Mesoscale Analysis and Forecast Model Support for the 1996 Centennial Olympic Games , 1998 .

[21]  L. Bernardet Multi-scale evolution of a derecho-producing MCS , 1997 .

[22]  B. Stunder,et al.  Evaluation of the RAMS model for estimating turbulent fluxes over the Chesapeake Bay , 1997 .

[23]  P. Brown,et al.  Evaluation of key microphysical parameters in three‐dimensional cloud‐model simulations using aircraft and multiparameter radar data , 1997 .

[24]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[25]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[26]  W. Cotton,et al.  Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: basic formulation and parcel model results , 1995 .

[27]  Patrick Minnis,et al.  Examination of Coupling between an Upper-Tropospheric Cloud System and Synoptic-Scale Dynamics Diagnosed from Wind Profiler and Radiosonde Data , 1995 .

[28]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[29]  C. Bretherton,et al.  Cloudiness and Marine Boundary Layer Dynamics in the ASTEX Lagrangian Experiments. Part I: Synoptic Setting and Vertical Structure , 1995 .

[30]  Jen‐Ping Chen Predictions of Saturation Ratio for Cloud Microphysical Models , 1994 .

[31]  Sergey Y. Matrosov,et al.  Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer Measurements , 1994 .

[32]  Chien Wang,et al.  A three‐dimensional numerical model of cloud dynamics, microphysics, and chemistry: 1. Concepts and formulation , 1993 .

[33]  Scot T. Heckman,et al.  Mesoscale Numerical Simulation of Cirrus Clouds—FIRE Case Study and Sensitivity Analysis , 1993 .

[34]  W. Cotton,et al.  Storm and Cloud Dynamics , 1992 .

[35]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[36]  R. Pielke,et al.  A comprehensive meteorological modeling system—RAMS , 1992 .

[37]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[38]  J. Verlinde,et al.  Analytical Solutions to the Collection Growth Equation: Comparison with Approximate Methods and Application to Cloud Microphysics Parameterization Schemes , 1990 .

[39]  J. Curry,et al.  Cloud overlap statistics , 1989 .

[40]  Stephen Nicholls,et al.  Observations of marine stratocumulus clouds during FIRE , 1988 .

[41]  W. Cotton,et al.  The Physics of the Marine Stratocumulus-Capped Mixed Layer. , 1987 .

[42]  Stephen G. Warren,et al.  Simultaneous Occurrence of Different Cloud Types , 1985 .

[43]  John Hallett,et al.  Degradation of In-Cloud Forward Scattering Spectrometer Probe Measurements in the Presence of Ice Particles , 1985 .

[44]  H. C. Simpson Bubbles, drops and particles , 1980 .

[45]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[46]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[47]  S. Mossop The influence of drop size distribution on the production of secondary ice particles during graupel growth , 1978 .

[48]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[49]  A. Hamielec,et al.  a Numerical Investigation of the Efficiency with which Simple Columnar Ice Crystals Collide with Supercooled Water Drops. , 1975 .

[50]  G. E. Hill Factors Controlling the Size and Spacing of Cumulus Clouds as Revealed by Numerical Experiments , 1974 .

[51]  H. Pruppacher,et al.  A Numerical Investigation of Collision Efficiencies of Simple Ice Plates Colliding With Supercooled Water Drops , 1974 .

[52]  A. H. Auer,et al.  The Dimension of Ice Crystals in Natural Clouds , 1970 .

[53]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[54]  D. Lilly On the numerical simulation of buoyant convection , 1962 .

[55]  W. Cotton,et al.  RAMS 2001: Current status and future directions , 2003 .

[56]  W. Cotton,et al.  Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds. , 1994 .

[57]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[58]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .