Electrochemical fabrication of nanowires poly (Indole-6-carboxylic acid) adorned with nanorod MnO2 for evaluation of its capacitive properties

[1]  F. Diaz,et al.  Capacitors Based on Polypyrrole Nanowire Electrodeposits , 2022, Polymers.

[2]  K. Nemade,et al.  Optimization of Supercapacitive Properties of Polyindole by Dispersion of MnO2 Nanoparticles , 2022, Chemical Physics Impact.

[3]  Neal Fairley,et al.  Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy , 2021 .

[4]  F. Armijo,et al.  Conducting polymer applied in a label-free electrochemical immunosensor for the detection prostate-specific antigen using its redox response as an analytical signal , 2020 .

[5]  V. Sannasi,et al.  Influence of Moringa oleifera gum on two polymorphs synthesis of MnO2 and evaluation of the pseudo-capacitance activity , 2020, Journal of Materials Science: Materials in Electronics.

[6]  F. Armijo,et al.  Electrochemical Immunosensing Platform for the Determination of the 20S Proteasome Using an Aminophenylboronic/Poly-indole-6-carboxylic Acid-Modified Electrode. , 2020, ACS applied bio materials.

[7]  Jiang Zhou,et al.  Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery , 2019, iScience.

[8]  Kwang Ho Kim,et al.  Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor , 2019, Energies.

[9]  Zhenlun Song,et al.  Microstructures and capacitance performance of MnO2 films fabricated by ultrasonic-assisted electrodeposition , 2019, Applied Surface Science.

[10]  F. Diaz,et al.  Electrochemical in situ synthesis of polypyrrole nanowires , 2019, Electrochemistry Communications.

[11]  G. Nie,et al.  Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization , 2019, European Polymer Journal.

[12]  S. Ghosh,et al.  Designing metal oxide-vertical graphene nanosheets structures for 2.6 V aqueous asymmetric electrochemical capacitor , 2019, Journal of Industrial and Engineering Chemistry.

[13]  T. Maiyalagan,et al.  Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability , 2019, Journal of Materials Science: Materials in Electronics.

[14]  L. Dai,et al.  Conducting Polymers for Flexible Supercapacitors , 2019, Macromolecular Chemistry and Physics.

[15]  Chuanyun Wan Facial Synthesis of 3D MnO2 Nanofibers Sponge and Its Application in Supercapacitors , 2018, International Journal of Electrochemical Science.

[16]  M. A. Valle Influence of the Electrolyte Salt on the Electrochemical Polymerization of Pyrrole. Effects on p-Doping/Undoping, Conductivity and Morphology , 2018 .

[17]  J. Lee,et al.  A Self-Templating Redox-Mediated Synthesis of Hollow Phosphated Manganese Oxide Nanospheres as Noble-Metal-like Oxygen Electrocatalysts , 2018, Chemistry of Materials.

[18]  R. Mane,et al.  Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors , 2018, Applied Surface Science.

[19]  R. Singh,et al.  Binder free MnO2/PIn electrode material for supercapacitor application , 2018 .

[20]  E. Frąckowiak,et al.  Sustainable materials for electrochemical capacitors , 2018 .

[21]  M. Rincón,et al.  Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors. , 2018, Chemical reviews.

[22]  C. Guan,et al.  Polypyrrole nanowires coated with a hollow shell for enhanced electrochemical performance , 2018 .

[23]  R. Choudhary,et al.  Augmented optical, dielectric and electrochemical performance for morphologically crushed nanorods decorated Fe:MnO 2 /PIn nanocomposite , 2018 .

[24]  B. Carbas,et al.  Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application , 2018, Polymer Bulletin.

[25]  Meifang Zhu,et al.  Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications , 2017 .

[26]  M. Sawangphruk,et al.  Charge storage performances and mechanisms of MnO2 nanospheres, nanorods, nanotubes and nanosheets. , 2017, Nanoscale.

[27]  A. K. Thakur,et al.  Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications , 2017 .

[28]  G. Ye Preparation of Poly(7-formylindole)/carbon Fibers Nanocomposites and Their High Capacitance Behaviors , 2017 .

[29]  Lidong Chen,et al.  Research progress on conducting polymer based supercapacitor electrode materials , 2017 .

[30]  Liangliang Zhu,et al.  Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage , 2017 .

[31]  F. Diaz,et al.  Enhancement of electrodes modified by electrodeposited PEDOT-nanowires with dispersed Pt nanoparticles for formic acid electro-oxidation , 2017 .

[32]  C. Bandaranayake,et al.  Effect of polymerisation current density of electrodes on the performance of polypyrrole based redox-capacitor , 2017 .

[33]  Peng Gao,et al.  The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets , 2017, Nature Communications.

[34]  J. Yang,et al.  Freestanding hierarchical NiO/MnO2 core/shell nanocomposite arrays for high-performance electrochemical energy storage , 2017 .

[35]  N. Hui,et al.  Conducting Polyaniline Nanowire Arrays Modified Electrode for High Performance Supercapacitor and Enhanced Catalysis of Nitrite Reduction , 2016 .

[36]  Jingkun Xu,et al.  PEDOT:PSS-assisted polyindole hollow nanospheres modified carbon cloth as high performance electrochemical capacitor electrodes , 2016 .

[37]  M. A. Valle Influence of the Supporting Electrolyte on the Electrochemical Polymerization of 3,4-Ethylenedioxythiophene. Effect on p- and n-Doping/Undoping, Conductivity and Morphology , 2016 .

[38]  Minshen Zhu,et al.  Nanostructured Polypyrrole as a flexible electrode material of supercapacitor , 2016 .

[39]  Fei Li,et al.  MnO2-based nanostructures for high-performance supercapacitors , 2015 .

[40]  Jingkun Xu,et al.  Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group , 2015 .

[41]  Lijuan Chen,et al.  Effects of different phases of MnO2 nanorods on the catalytic thermal decomposition of ammonium perchlorate , 2015 .

[42]  Jingkun Xu,et al.  Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte , 2015 .

[43]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[44]  Harish Mudila,et al.  Polyindole/Graphene Oxide Nanocomposites: The Novel Material for Electrochemical Energy Storage , 2015 .

[45]  F. Kang,et al.  MnO2/polypyrrole nanotubular composites: reactive template synthesis, characterization and application as superior electrode materials for high-performance supercapacitors , 2014 .

[46]  Mingxian Liu,et al.  Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors , 2013 .

[47]  H. Ahn,et al.  β-MnO 2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries , 2013 .

[48]  R. Prakash,et al.  Pressure dependent surface morphology and Raman studies of semicrystalline poly(indole-5-carboxylic acid) by the Langmuir–Blodgett technique , 2013 .

[49]  Zhixiang Wei,et al.  Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window , 2012 .

[50]  Yong Yang,et al.  Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization , 2008, Nanotechnology.

[51]  J. Bukowska,et al.  Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. , 2006, Bioelectrochemistry.

[52]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[53]  Ian Larson,et al.  Measurement of lactose crystallinity using Raman spectroscopy. , 2005, Journal of pharmaceutical and biomedical analysis.

[54]  G. Luther Manganese(II) Oxidation and Mn(IV) Reduction in the Environment—Two One-Electron Transfer Steps Versus a Single Two-Electron Step , 2005 .

[55]  C. Julien,et al.  Raman spectra of birnessite manganese dioxides , 2003 .

[56]  S. Gaarenstroom,et al.  Manganese Dioxide (MnO2) by XPS , 2001 .

[57]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[58]  D. Billaud,et al.  Electrochemical properties of polyindole and poly(5-cyanoindole) in LiClO4—acetonitrile and in HCl and HClO4 solutions , 1998 .

[59]  A. Melveger Laser‐raman study of crystallinity changes in poly(ethylene terephthalate) , 1972 .

[60]  H. Che,et al.  Core/shell nanorods of MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors , 2018 .

[61]  Recep Yuksel,et al.  Coaxial silver nanowire/polypyrrole nanocomposite supercapacitors , 2018 .

[62]  Yang Yang,et al.  CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors , 2017 .

[63]  Baoyang Lu,et al.  One-step template-free electrodeposition of novel poly(indole-7-carboxylic acid) nanowires and their high capacitance properties , 2015 .

[64]  A. Al-Enizi,et al.  One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors , 2022 .