On the robust estimation of power spectra, coherences, and transfer functions

Robust estimation of power spectra, coherences, and transfer functions is investigated in the context of geophysical data processing. The methods described are frequency-domain extensions of current techniques from the statistical literature and are applicable in cases where section-averaging methods would be used with data that are contaminated by local nonstationarity or isolated outliers. The paper begins with a review of robust estimation theory, emphasizing statistical principles and the maximum likelihood or M-estimators. These are combined with section-averaging spectral techniques to obtain robust estimates of power spectra, coherences, and transfer functions in an automatic, data-adaptive fashion. Because robust methods implicitly identify abnormal data, methods for monitoring the statistical behavior of the estimation process using quantile-quantile plots are also discussed. The results are illustrated using a variety of examples from electromagnetic geophysics.

[1]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[2]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[3]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[4]  J. Larsen Electromagnetic Response Functions from Interrupted and Noisy Data , 1980 .

[5]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[6]  K. G. Mehrotra,et al.  Unbiased estimation of parameters by order statistics in the case of censored samples , 1974 .

[7]  D. F. Andrews,et al.  A Robust Method for Multiple Linear Regression , 1974 .

[8]  John Clarke,et al.  Magnetotellurics with a remote magnetic reference , 1979 .

[9]  D. Thomson,et al.  Robust-resistant spectrum estimation , 1982, Proceedings of the IEEE.

[10]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[11]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[12]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[13]  V. Klema LINPACK user's guide , 1980 .

[14]  D. Rankin,et al.  ENHANCEMENT OF SIGNAL-TO-NOISE RATIO IN MAGNETOTELLURIC DATA , 1977 .

[15]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[16]  L. V. Medford,et al.  Electromagnetic study of the Atlantic continental margin using a section of a transatlantic cable , 1986 .

[17]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[18]  David A. Belsley,et al.  Regression Analysis and its Application: A Data-Oriented Approach.@@@Applied Linear Regression.@@@Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1981 .

[19]  Vic Barnett,et al.  PRINCIPLES AND METHODS FOR HANDLING OUTLIERS IN DATA SETS , 1983 .

[20]  J. Larsen Low Frequency (0-1-6*0 cpd) Electromagnetic Study of Deep Mantle Electrical Conductivity Beneath the Hawaiian Islands , 1975 .

[21]  D. Thomson Spectrum estimation techniques for characterization and development of WT4 waveguide–I , 1977, The Bell System Technical Journal.

[22]  Rupert G. Miller The jackknife-a review , 1974 .

[23]  G. Box,et al.  Bayesian analysis of some outlier problems in time series , 1979 .

[24]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[25]  T. D. Gamble magnetotellurics with a remote reference , 1979 .

[26]  M. M. Siddiqui,et al.  Robust Estimation of Location , 1967 .

[27]  Michael Stuart,et al.  Understanding Robust and Exploratory Data Analysis , 1984 .

[28]  R. K. Rao Yarlagadda,et al.  Robust Spectral Estimation , 1988, Optics & Photonics.

[29]  Scott L. Zeger,et al.  Exploring an Ozone Spatial Time Series in the Frequency Domain , 1985 .

[30]  Alan G. Jones,et al.  Magnetotelluric transfer function estimation improvement by a coherence‐based rejection technique , 1984 .

[31]  A. M. Gross Confidence Interval Robustness with Long-Tailed Symmetric Distributions , 1976 .

[32]  D. Thomson,et al.  WT4 millimeter waveguide system: Spectrum estimation techniques for characterization and development of WT4 waveguide — II , 1977, The Bell System Technical Journal.

[33]  C. Vogel Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy , 1986 .

[34]  Patrick Flandrin,et al.  Wigner-Ville spectral analysis of nonstationary processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[35]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[36]  R. L. Mason,et al.  Outlier-Induced Collinearities , 1985 .

[37]  A. Madansky Identification of Outliers , 1988 .

[38]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[39]  Nicholas I. Fisher,et al.  Graphical methods for investigating the fit of a Fisher distribution to spherical data , 1982 .

[40]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[41]  Beat Kleiner,et al.  Exploratory data analysis in the geophysical sciences , 1980 .

[42]  M. Otto,et al.  Outliers in Time Series , 1972 .