Multiyear Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains Facility

AbstractA long data record (14 yr) of ground-based observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus clouds during summer months. First, a fuzzy logic–based algorithm is developed to eliminate insect radar echoes in the boundary layer that hinder the ability to develop representative cloud statistics. The refined dataset is used to document the daytime composites of fair-weather cumulus clouds properties. Doppler velocities are processed for lower reflectivity thresholds that contain small cloud droplets having insignificant terminal velocities; thus, Doppler velocities are used as tracers of air motion. The algorithm is implemented to process the entire 14-yr dataset of cloud radar vertical velocity data. Composite diurnal variations of the cloud vertical velocity statistics, surface parameters, and profiles of updraft and downdraft fractions, bulk velocity o...

[1]  Roland B. Stull,et al.  A Fair-Weather Cumulus Cloud Classification Scheme for Mixed-Layer Studies , 1985 .

[2]  A. Pier Siebesma,et al.  A Simple Parameterization for Detrainment in Shallow Cumulus , 2006 .

[3]  Judith A. Curry,et al.  Characteristics of small tropical cumulus clouds and their impact on the environment , 1998 .

[4]  Larry K. Berg,et al.  A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli , 2005 .

[5]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[6]  F. Guichard,et al.  The role of stability and moisture in the diurnal cycle of convection over land , 2004 .

[7]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[8]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[9]  Jean-Christophe Golaz,et al.  Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land , 2002 .

[10]  Pavlos Kollias,et al.  Radar Observations of Updrafts, Downdrafts, and Turbulence in Fair-Weather Cumuli , 2001 .

[11]  E. Clothiaux,et al.  A Technique for the Automatic Detection of Insect Clutter in Cloud Radar Returns , 2008 .

[12]  Jeffrey R. French,et al.  Evolution of small cumulus clouds in Florida: observations of pulsating growth , 1999 .

[13]  Roel Neggers,et al.  Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations , 2003 .

[14]  J. C. Liljegren,et al.  A new retrieval for cloud liquid water path using a ground‐based microwave radiometer and measurements of cloud temperature , 2001 .

[15]  Roel Neggers,et al.  An Evaluation of Mass Flux Closures for Diurnal Cycles of Shallow Cumulus , 2004 .

[16]  Pavlos Kollias,et al.  Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research , 2007 .

[17]  J. Warner,et al.  Time Variation of Updraft and Water Content in Small Cumulus Clouds , 1977 .

[18]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[19]  R. Stull,et al.  Boundary Layer Experiment - 1983, , 1984 .

[20]  Bart Geerts,et al.  The Use of Millimeter Doppler Radar Echoes to Estimate Vertical Air Velocities in the Fair-Weather Convective Boundary Layer , 2005 .

[21]  Pavlos Kollias,et al.  The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations , 2000 .

[22]  Roger Lhermitte,et al.  A 94-GHz Doppler Radar for Cloud Observations , 1987 .

[23]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[24]  Dana E. Veron,et al.  First measurements of the Twomey indirect effect using ground‐based remote sensors , 2003 .

[25]  Bruce A. Albrecht,et al.  A Model of the Thermodynamic Structure of the Trade-Wind Boundary Layer: Part II. Applications , 1979 .

[26]  C. Fairall,et al.  Measurement of Stratus Cloud and Drizzle Parameters in ASTEX with a K , 1995 .

[27]  S. Klein,et al.  Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility , 2009 .

[28]  A. Betts Non‐precipitating cumulus convection and its parameterization , 1973 .

[29]  P. Kollias,et al.  Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility , 2010 .

[30]  Thijs Heus,et al.  Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking , 2008 .

[31]  Justin W. Monroe,et al.  RACORO Extended-Term Aircraft Observations of Boundary Layer Clouds , 2012 .

[32]  Wilfried Brutsaert,et al.  Evaporation into the atmosphere : theory, history, and applications , 1982 .

[33]  P. Squires Penetrative Downdraughts in Cumuli , 1958 .

[34]  Brooks E. Martner,et al.  An Unattended Cloud-Profiling Radar for Use in Climate Research , 1998 .

[35]  R. Stull,et al.  Boundary layer experiment 1996 (BLX96) , 1997 .

[36]  M. Miller,et al.  Vertical velocity structure of marine boundary layer trade wind cumulus clouds , 2011 .

[37]  Pedro Viterbo,et al.  Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40 , 2005 .

[38]  A. Blyth,et al.  An airborne study of vertical structure and microphysical variability within a small cumulus , 2007 .

[39]  Evgueni I. Kassianov,et al.  Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site , 2008 .

[40]  J. Seinfeld,et al.  Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) , 2008 .

[41]  A. P. Siebesma,et al.  The diurnal cycle of shallow cumulus clouds over land: A single‐column model intercomparison study , 2004 .

[42]  Ronald M. Welch,et al.  Cumulus Cloud Properties Derived Using Landsat Satellite Data , 1986 .

[43]  S. Klein,et al.  Mechanisms Affecting the Transition from Shallow to Deep Convection over Land: Inferences from Observations of the Diurnal Cycle Collected at the ARM Southern Great Plains Site , 2010 .

[44]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[45]  Robert F. Cahalan,et al.  Fractal Statistics of Cloud Fields , 1989 .

[46]  A. P. Siebesma,et al.  Evaluation of Parametric Assumptions for Shallow Cumulus Convection , 1995 .

[47]  M. Lemone,et al.  The Relationship of Trade Wind Cumulus Distribution to Subcloud Layer Fluxes and Structure , 1976 .

[48]  Martin Köhler,et al.  Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models , 2004 .

[49]  W. Brutsaert Evaporation into the atmosphere , 1982 .

[50]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[51]  Bruce A. Albrecht,et al.  Parameterization of Trade-Cumulus Cloud Amounts , 1981 .

[52]  Richard C. J. Somerville,et al.  Radiative Transfer through Broken Clouds: Observations and Model Validation , 2002 .

[53]  B. Albrecht,et al.  A theoretical and observational analysis on the formation of fair-weather cumuli , 2002 .