Robust Equilibria in Mean-Payoff Games

We study the problem of finding robust equilibria in multiplayer concurrent games with mean payoff objectives. A (k, t)-robust equilibrium is a strategy profile such that no coalition of size k can improve the payoff of one its member by deviating, and no coalition of size t can decrease the payoff of other players. While deciding whether there exists such equilibria is undecidable in general, we suggest algorithms for two meaningful restrictions on the complexity of strategies. The first restriction concerns memory. We show that we can reduce the problem of the existence of a memoryless robust equilibrium to a formula in the (existential) theory of reals. The second restriction concerns randomisation. We suggest a general transformation from multiplayer games to two-player games such that pure equilibria in the first game correspond to winning strategies in the second one. Thanks to this transformation, we show that the existence of robust equilibria can be decided in polynomial space, and that the decision problem is PSPACE-complete.

[1]  Danny Dolev,et al.  Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation , 2006, PODC '06.

[2]  Romain Brenguier,et al.  Robust Equilibria in Concurrent Games , 2013, ArXiv.

[3]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Limit-Average Games , 2011, CONCUR.

[4]  Reinhard Selten Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit , 2016 .

[5]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Patricia Bouyer,et al.  Concurrent Games with Ordered Objectives , 2012, FoSSaCS.

[7]  Jean-François Raskin,et al.  Iterated Regret Minimization in Game Graphs , 2010, MFCS.

[8]  Krishnendu Chatterjee,et al.  The complexity of multi-mean-payoff and multi-energy games , 2012, Inf. Comput..

[9]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[10]  Krishnendu Chatterjee,et al.  Games with secure equilibria , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[11]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[12]  Jean-François Raskin,et al.  Optimal Values of Multidimensional Mean-Payoff Games , 2014 .

[13]  Romain Brenguier,et al.  Equilibres de Nash dans les jeux concurrents : application aux jeux temporisés. (Nash equilibria in concurrent games : application to timed games) , 2012 .

[14]  Krishnendu Chatterjee,et al.  Strategy logic , 2007, Inf. Comput..

[15]  Michael Ummels,et al.  The Complexity of Nash Equilibria in Infinite Multiplayer Games , 2008, FoSSaCS.

[16]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[17]  Véronique Bruyère,et al.  Equilibria in Quantitative Reachability Games , 2010, CSR.

[18]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games , 2009, ICALP.

[19]  Robert J. Aumann,et al.  16. Acceptable Points in General Cooperative n-Person Games , 1959 .

[20]  Aniello Murano,et al.  What Makes Atl* Decidable? A Decidable Fragment of Strategy Logic , 2012, CONCUR.

[21]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[22]  Patricia Bouyer,et al.  Mixed Nash Equilibria in Concurrent Terminal-Reward Games , 2014, FSTTCS.

[23]  Jean-François Raskin,et al.  Pareto Curves of Multidimensional Mean-Payoff Games , 2015, CAV.

[24]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .