Empirical likelihood for generalized linear models with longitudinal data

In this paper, empirical likelihood-based inference for longitudinal data within the framework of generalized linear model is investigated. The proposed procedure takes into account the within-subject correlation without involving direct estimation of nuisance parameters in the correlation matrix and retains optimal even if the working correlation structure is misspecified. The proposed approach yields more efficient estimators than conventional generalized estimating equations and achieves the same asymptotic variance as quadratic inference function based methods. Furthermore, hypothesis testing procedures are developed to test whether or not the model assumption is met and whether or not regression coefficients are significant. The finite sample performance of the proposed methods is evaluated through simulation studies. Application to the Ohio Children Wheeze Status data is also discussed.

[1]  Zhongyi Zhu,et al.  Weighted empirical likelihood for generalized linear models with longitudinal data , 2010 .

[2]  Suojin Wang,et al.  Generalized empirical likelihood methods for analyzing longitudinal data , 2010, Biometrika.

[3]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[4]  H. Cramér Mathematical methods of statistics , 1947 .

[5]  Jian Shi,et al.  Empirical Likelihood for Partially Linear Models , 2000 .

[6]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[7]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[8]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[9]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[10]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[11]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[12]  Guido W. Imbens,et al.  One-step estimators for over-identified generalized method of moments models , 1997 .

[13]  Runze Li,et al.  Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data , 2006, Biometrics.

[14]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[15]  David Ruppert,et al.  Empirical Likelihood‐Based Inferences for Generalized Partially Linear Models , 2009, Scandinavian journal of statistics, theory and applications.

[16]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[17]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[18]  Lixing Zhu,et al.  Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data , 2007 .

[19]  Yong Zhou,et al.  Block empirical likelihood for longitudinal partially linear regression models , 2006 .

[20]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[21]  Lixing Zhu,et al.  Empirical likelihood inference in partially linear single-index models for longitudinal data , 2010, J. Multivar. Anal..

[22]  V. Carey,et al.  Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance , 2003 .

[23]  Min Zhu,et al.  Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method. , 2009, Biostatistics.

[24]  Jianxin Pan,et al.  Modelling of covariance structures in generalised estimating equations for longitudinal data , 2006 .

[25]  Subhash R. Lele,et al.  A composite likelihood approach to (co)variance components estimation , 2002 .

[26]  Peter McCullagh,et al.  Quasi‐Likelihood Functions , 2006 .

[27]  Zhongyi Zhu,et al.  Partial Linear Models for Longitudinal Data Based on Quadratic Inference Functions , 2008 .

[28]  Yang Bai,et al.  Penalized quadratic inference functions for single-index models with longitudinal data , 2009, J. Multivar. Anal..

[29]  Empirical Likelihood Inferences for Semiparametric Varying-Coefficient Partially Linear Models with Longitudinal Data , 2010 .

[30]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[31]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .

[32]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[33]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[34]  Bing-Yi Jing,et al.  Empirical likelihood for partial linear models , 2003 .

[35]  Martin Crowder,et al.  On the use of a working correlation matrix in using generalised linear models for repeated measures , 1995 .

[36]  Liugen Xue,et al.  Empirical likelihood inferences for semiparametric varying-coefficient partially linear errors-in-variables models with longitudinal data , 2009 .

[37]  Hu Yang,et al.  Empirical likelihood for semiparametric varying coefficient partially linear models with longitudinal data , 2010 .

[38]  Lixing Zhu,et al.  Empirical Likelihood for a Varying Coefficient Model With Longitudinal Data , 2007 .

[39]  Wen Jian,et al.  Analysis of Longitudinal Data in the Case–Control Studies via Empirical Likelihood , 2007, Commun. Stat. Simul. Comput..

[40]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[41]  Chen Xia Empirical Likelihood for Generalized Linear Models with Missing Data , 2013 .

[42]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[43]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .