Ultrafast coherent nanoscopy

The dramatic advances of nanotechnology experienced in recent years enabled us to fabricate optical nanostructures or nano-antennas that greatly enhance the conversion of localised electromagnetic energy into radiation and vice versa. Nano-antennas offer the required improvements in terms of bandwidth, interaction strength and resolution for combining ultrafast spectroscopy, nano-optics and quantum optics to fundamentally push forward the possibility of the coherent optical access on individual nanostructures or even molecules above cryogenic temperatures, where dephasing processes typically occur at very short time scales. In this context, we discuss recent progress in the theoretical description of light-matter interaction at the nanoscale and related experimental findings. Moreover, we present concrete examples in support of our vision and propose a series of experiments that aim at exploring novel promising regimes of optical coherence and quantum optics in advanced spectroscopy. We envisage extensions to ultrafast and nonlinear phenomena, especially in the direction of multidimensional nanoscopy.

[1]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[2]  E. Di Fabrizio,et al.  Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. , 2011, Nanoscale.

[3]  Klaus Müllen,et al.  Visualizing and controlling vibrational wave packets of single molecules , 2010, Nature.

[4]  G. Bryant,et al.  Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. , 2008, Nano letters.

[5]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[6]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[7]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[8]  I. Walmsley,et al.  Towards high-speed optical quantum memories , 2009, 0912.2970.

[9]  E. Betzig,et al.  Near-field spectroscopy of single molecules at room temperature , 1994, Nature.

[10]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[11]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[12]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[13]  G. Fleming,et al.  Two-dimensional electronic spectroscopy of molecular aggregates. , 2009, Accounts of chemical research.

[14]  Minhaeng Cho,et al.  Coherent two-dimensional optical spectroscopy. , 2008, Chemical reviews.

[15]  Daniel Neuhauser,et al.  Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics. , 2009, The Journal of chemical physics.

[16]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[17]  I. Gerhardt,et al.  Scanning near-field optical coherent spectroscopy of single molecules at 1.4 K. , 2007, Optics letters.

[18]  R. Hochstrasser,et al.  Two-dimensional spectroscopy at infrared and optical frequencies , 2007, Proceedings of the National Academy of Sciences.

[19]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[20]  V. Sandoghdar,et al.  Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching , 2007, 0710.4092.

[21]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[22]  D. Walls,et al.  Macroscopic quantum superpositions by means of single-atom dispersion. , 1990, Optics letters.

[23]  J. Tomasi,et al.  Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle , 2001 .

[24]  Graham R. Fleming,et al.  Two-dimensional spectroscopy of electronic couplings in photosynthesis , 2005, Nature.

[25]  F. Stellacci,et al.  Light-matter interactions: Ultrastrong routes to new chemistry. , 2012, Nature materials.

[26]  Dieter W. Pohl Near-field optics : light for the world of nano-scale science , 1995 .

[27]  J. Peřina Coherence and statistics of photons and atoms , 2001 .

[28]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[29]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[30]  R. Hildner,et al.  Femtosecond coherence and quantum control of single molecules at room temperature , 2010, 1012.2366.

[31]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[32]  Eli Barkai,et al.  Theory of single-molecule spectroscopy: beyond the ensemble average. , 2004, Annual review of physical chemistry.

[33]  R. Silbey,et al.  Current status of single-molecule spectroscopy: Theoretical aspects , 2002 .

[34]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[35]  Evelyn L. Hu,et al.  Strongly correlated photons on a chip , 2011, 1108.3053.

[36]  Urs P. Wild,et al.  Single-molecule spectroscopy. , 1997, Annual review of physical chemistry.

[37]  V. Scarani,et al.  Phase shift of a weak coherent beam induced by a single atom. , 2009, Physical review letters.

[38]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[39]  I. Walmsley,et al.  Single-photon-level quantum memory at room temperature. , 2010, Physical review letters.

[40]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[41]  Christian Strüber,et al.  Coherent Two-Dimensional Nanoscopy , 2011, Science.

[42]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[43]  W. P. Ambrose,et al.  Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy , 1994, Science.

[44]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[45]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[46]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[47]  Alois Renn,et al.  Single-Molecule Sensitivity in Optical Absorption at Room Temperature , 2010 .

[48]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[49]  D. Jonas Two-dimensional femtosecond spectroscopy. , 2003, Annual review of physical chemistry.

[50]  Xiaoji G. Xu,et al.  Femtosecond nanofocusing with full optical waveform control. , 2011, Nano letters.

[51]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[52]  G. Fleming,et al.  Quantum Coherence in Photosynthetic Light Harvesting , 2012 .

[53]  Andrew G. Glen,et al.  APPL , 2001 .

[54]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[55]  Xie,et al.  Single molecule emission characteristics in near-field microscopy. , 1995, Physical review letters.

[56]  C. Girard Near fields in nanostructures , 2005 .

[57]  Xue-Wen Chen,et al.  Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking. , 2012, Physical review letters.

[58]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[59]  M. Orrit,et al.  Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. , 1990, Physical review letters.

[60]  O. Martin,et al.  Generalized bloch equations for optical interactions in confined geometries , 2005 .

[61]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[62]  Wei Min,et al.  Ground-State Depletion Microscopy: Detection Sensitivity of Single-Molecule Optical Absorption at Room Temperature , 2010 .

[63]  Nassiredin M. Mojarad,et al.  Perfect reflection of light by an oscillating dipole. , 2008, Physical review letters.

[64]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[65]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[66]  G Zumofen,et al.  Strong extinction of a laser beam by a single molecule. , 2007, Physical review letters.

[67]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[68]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[69]  Barnett,et al.  Electromagnetic field quantization in absorbing dielectrics. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[70]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[71]  Wei Bao,et al.  Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging , 2012, Science.

[72]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[73]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[74]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[75]  Michel Orrit,et al.  Single-molecule optics. , 2004, Annual review of physical chemistry.

[76]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[77]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[78]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[79]  Peifang Tian,et al.  Femtosecond Phase-Coherent Two-Dimensional Spectroscopy , 2003, Science.

[80]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[81]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[82]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[83]  V. Sandoghdar,et al.  Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. , 2012, Physical review letters.

[84]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[85]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[86]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[87]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[88]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[89]  T. Puppe,et al.  Nonlinear spectroscopy of photons bound to one atom , 2008, 0803.2712.

[90]  W. Moerner,et al.  Examining Nanoenvironments in Solids on the Scale of a Single, Isolated Impurity Molecule , 1994, Science.

[91]  G. Zumofen,et al.  Controlling the phase of a light beam with a single molecule. , 2011, Physical review letters.

[92]  Warren S. Warren,et al.  Role of Pulse Phase and Direction in Two-Dimensional Optical Spectroscopy , 1999 .

[93]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1993 .

[94]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[95]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[96]  Marco Finazzi,et al.  Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. , 2009, The Review of scientific instruments.

[97]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[98]  Wei Zhang,et al.  Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity , 2011 .

[99]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[100]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[101]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[102]  Xue-Wen Chen,et al.  Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. , 2010, Optics express.

[103]  Carmichael,et al.  Photon-statistics dependence of single-atom absorption. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[104]  Mario Agio,et al.  Optical antennas as nanoscale resonators. , 2011, Nanoscale.

[105]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[106]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[107]  Editors , 1986, Brain Research Bulletin.

[108]  Elisabetta Collini,et al.  Spectroscopic signatures of quantum-coherent energy transfer. , 2013, Chemical Society reviews.

[109]  Ahmad Mohammadi,et al.  Light scattering under nanofocusing: Towards coherent nanoscopies , 2011, 1110.6777.