Payload Parameter Identification of a Flexible Space Manipulator System via Complex Eigenvalue Estimation

Manipulator systems are widely used in payload capture and movement in the ground/space operation due to their dexterous manipulation capability. In this study, a method for identifying the payload parameters of a flexible space manipulator using the estimated system of complex eigenvalue matrix is proposed. The original nonlinear dynamic model of the manipulator is linearized at a selected working point. Subsequently, the system state-space model and corresponding complex eigenvalue parameters are determined by the observer/Kalman filter identification algorithm using the torque input signal of the motor and the vibration output signals of the link. Therefore, the inertia parameters of the payload, that is, the mass and the moment of inertia, can be derived from the identified complex eigenvalue system and mode shapes by solving a least-squares problem. In numerical simulations, the proposed parameter identification method is implemented and compared with the classical recursive least-squares and affine projection sign algorithms. Numerical results demonstrate that the proposed method can effectively estimate the payload parameters with satisfactory accuracy.

[1]  Andres San-Millan,et al.  Payload Mass Identification of a Single-Link Flexible Arm Moving under Gravity: An Algebraic Identification Approach , 2015 .

[2]  Qitao Huang,et al.  An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator , 2015 .

[3]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[4]  Jacob Benesty,et al.  An Affine Projection Sign Algorithm Robust Against Impulsive Interferences , 2010, IEEE Signal Processing Letters.

[5]  Hirotaka Igawa,et al.  Multi-input Multi-output System Identification Using Impulse Responses , 2008 .

[6]  Manoranjan Majji,et al.  Random Matrix-Based Approach for Uncertainty Analysis of the Eigensystem Realization Algorithm , 2017 .

[7]  B. Rohal’-Ilkiv,et al.  Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation , 2014 .

[8]  Seung Hun Kim,et al.  Variable step-size affine projection sign algorithm using selective input vectors , 2015, Signal Process..

[9]  Laurent Mevel,et al.  Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements ☆ , 2013 .

[10]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[11]  Khanh Pham,et al.  On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm , 2008 .

[12]  Jinguo Liu,et al.  Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method , 2019 .

[13]  Richard Rembala,et al.  Robotic assembly and maintenance of future space stations based on the ISS mission operations experience , 2009 .

[14]  Elizabeth Bains,et al.  SRMS History, Evolution and Lessons Learned , 2011 .

[15]  Kazuya Yoshida,et al.  On-line parameter identification of a payload handled by flexible based manipulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[16]  Edwin Reynders,et al.  System Identification Methods for (Operational) Modal Analysis: Review and Comparison , 2012 .

[17]  Gerardo Martinez,et al.  Zero-G experimental validation of a robotics-based inertia identification algorithm , 2010, Defense + Commercial Sensing.

[18]  Kazuya Yoshida,et al.  Inertia parameter identification for a free-flying space robot , 2002 .

[19]  Guoping Li,et al.  Experimental Identification and Vibration Control of A Piezoelectric Flexible Manipulator Using Optimal Multi-Poles Placement Control , 2017 .

[20]  Panfeng Huang,et al.  Inertia parameters identification for cellular space robot through interaction , 2017 .

[21]  Zhongyi Chu,et al.  Inertial parameter identification using contact force information for an unknown object captured by a space manipulator , 2017 .

[22]  S. Cheung,et al.  A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data , 2017 .

[23]  John D. Childs,et al.  A review of space robotics technologies for on-orbit servicing , 2015 .

[24]  H. Schwarz,et al.  Model modification and state estimation for an experimental planar two-link flexible manipulator by using an efficient approach , 1997, 1997 European Control Conference (ECC).

[25]  Tomohiro Narumi,et al.  Multipoint-contact attitude control of non-cooperative spacecraft with parameter estimation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26]  Ming Wang,et al.  Attitude takeover control for post-capture of target spacecraft using space robot , 2016 .

[27]  Panfeng Huang,et al.  Recursive Differential Evolution Algorithm for Inertia Parameter Identification of Space Manipulator , 2016 .

[28]  Junfeng Xin,et al.  Improved eigensystem realization algorithm and its application on ocean platforms , 2018, Cluster Computing.

[29]  I. Sharf,et al.  Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris , 2013 .

[30]  Richard W. Longman,et al.  Generalized Framework of OKID for Linear State-Space Model Identification , 2017 .

[31]  Andres San-Millan Rodriguez,et al.  Online Algebraic Identification of the Payload Changes in a Single-Link Flexible Manipulator Moving under Gravity , 2014 .

[32]  Robert B. Friend,et al.  Orbital Express program summary and mission overview , 2008, SPIE Defense + Commercial Sensing.

[33]  Wei Guo,et al.  Dynamic Parameter Identification of a Lower Extremity Exoskeleton Using RLS-PSO , 2019, Applied Sciences.

[34]  Yong Xie,et al.  On-orbit identification of flexible parameters of spacecraft , 2016 .