Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared Spectra Observed from Space

AbstractVariability present at a satellite instrument sampling scale (small-scale variability) has been neglected in earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally averaged spectral radiances. The effects of small-scale variability in the atmospheric change detection process are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested. The percentage error in the annual 10° zonal mean spectral radiance difference obtained by assuming linear combinations of individual perturbations e...

[1]  W. Paul Menzel,et al.  MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results , 2008 .

[2]  Patrick Minnis,et al.  Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data , 2007 .

[3]  Patrick Minnis,et al.  Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties , 1998 .

[4]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .

[5]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[6]  S. Bony,et al.  On dynamic and thermodynamic components of cloud changes , 2004 .

[7]  William L. Smith,et al.  AIRS/AMSU/HSB validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  D. J. Segelstein The complex refractive index of water , 1981 .

[9]  Moustafa T. Chahine,et al.  Determination of the Temperature Profile in an Atmosphere from its Outgoing Radiance , 1968 .

[10]  M. R. Allen,et al.  Checking for model consistency in optimal fingerprinting , 1999 .

[11]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[12]  Bryan A. Baum,et al.  A fast infrared radiative transfer model for overlapping clouds , 2007 .

[13]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[14]  Ping Yanga,et al.  Radiative properties of cirrus clouds in the infrared (8–13 m) spectral region , 2001 .

[15]  Christopher P. Weaver,et al.  Improved Techniques for Evaluating GCM Cloudiness Applied to the NCAR CCM3 , 2001 .

[16]  Xu Liu,et al.  Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept. , 2006, Applied optics.

[17]  Patrick Minnis,et al.  Ice cloud properties in ice-over-water cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and TRMM Microwave Imager data , 2007 .

[18]  Alexander Marshak,et al.  Solar zenith and viewing geometry‐dependent errors in satellite retrieved cloud optical thickness: Marine stratocumulus case , 2009 .

[19]  Tristan L'Ecuyer,et al.  Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds , 2006 .

[20]  M. Chahine,et al.  Remote sounding of cloudy atmospheres. II - Multiple cloud formations , 1977 .

[21]  L. Larrabee Strow,et al.  Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation , 2006 .

[22]  H. Fleming,et al.  INDIRECT MEASUREMENTS OF ATMOSPHERIC TEMPERATURE PROFILES FROM SATELLITES: I. INTRODUCTION , 1966 .

[23]  Michael J. Garay,et al.  The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals , 2007 .

[24]  Edward T. Olsen,et al.  Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific , 2004 .

[25]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[26]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[27]  G. Stephens,et al.  Statistical radiative transport in one-dimensional media and its application to the terrestrial atmosphere , 1991 .

[28]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm 1 , 2007 .

[29]  Arthur C. Neuendorffer,et al.  Ozone monitoring with TIROS‐N operational vertical sounders , 1996 .

[30]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[31]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[33]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[34]  John A. Dykema,et al.  Testing Climate Models Using Thermal Infrared Spectra , 2008 .

[35]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[36]  Yi Huang,et al.  Separation of longwave climate feedbacks from spectral observations , 2010 .

[37]  Steven Platnick,et al.  Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Bryan A. Baum,et al.  Radiative Properties of Cirrus Clouds in the Infrared (8-13 Microns) Spectral Region , 2013 .

[39]  Paquita Zuidema,et al.  On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX , 1998 .

[40]  Robert F. Cahalan,et al.  Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo , 1994 .

[41]  Michael D. King,et al.  A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces , 2001 .

[42]  William L. Smith,et al.  Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels , 2009 .

[43]  Steven A. Ackerman,et al.  Inference of ice cloud properties from high spectral resolution infrared observations , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[44]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[45]  Norman G. Loeb,et al.  Inference of Marine Stratus Cloud Optical Depths from Satellite Measurements: Does 1D Theory Apply? , 1998 .

[46]  Xu Liu,et al.  Case‐study of a principal‐component‐based radiative transfer forward model and retrieval algorithm using EAQUATE data , 2007 .

[47]  W. B. Knighton,et al.  Comparison of Emissions from On-Road Sources Using a Mobile Laboratory Under Various Driving and Operational Sampling Modes , 2008 .

[48]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[49]  Seiji Kato,et al.  Estimate of satellite‐derived cloud optical thickness and effective radius errors and their effect on computed domain‐averaged irradiances , 2006 .

[50]  Xu Liu,et al.  Physically Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements , 2007 .