New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors

We report new flexible “marshmallow-like” aerogels and xerogels with a bendable feature from the methyltrimethoxysilane (MTMS) and dimethyldimethoxysilane (DMDMS) co-precursor systems. A 2-step acid/base sol–gel process and surfactant are employed to control the phase separation of the hydrophobic networks, which give porous monolithic gels. The obtained gels become softer and more flexible with increasing DMDMS fractions.

[1]  Kazuki Nakanishi,et al.  Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system. , 2011, Journal of colloid and interface science.

[2]  K. Nakanishi,et al.  Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. , 2011, Chemical Society reviews.

[3]  Haiquan Guo,et al.  Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide, tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process , 2009 .

[4]  K. Nakanishi,et al.  Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels , 2009 .

[5]  F. Renzo,et al.  Aerogel materials from marine polysaccharides , 2008 .

[6]  K. Nakanishi,et al.  Elastic organic–inorganic hybrid aerogels and xerogels , 2008 .

[7]  Lina Zhang,et al.  Cellulose aerogels from aqueous alkali hydroxide-urea solution. , 2008, ChemSusChem.

[8]  Kazuki Nakanishi,et al.  New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties , 2007 .

[9]  H. Hirashima,et al.  Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. , 2006, Journal of colloid and interface science.

[10]  J. Brennan,et al.  Macroporous monolithic methylsilsesquioxanes prepared by a two-step acid/acid processing method , 2006 .

[11]  A. Pierre,et al.  NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics , 2005 .

[12]  N. Leventis,et al.  Cross-linking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials , 2005 .

[13]  C. Sotiriou-Leventis,et al.  Isocyanate-Crosslinked Silica Aerogel Monoliths: Preparation and Characterization , 2004 .

[14]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[15]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[16]  Bruce Dunn,et al.  Electrically conductive oxide aerogels: newmaterials in electrochemistry , 2001 .

[17]  D. Haranath,et al.  Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels , 1999 .

[18]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[19]  S. J. Kramer,et al.  Organically modified silicate aerogels, ``Aeromosils`` , 1996 .

[20]  R. Pekala,et al.  Aerogels derived from multifunctional organic monomers , 1992 .

[21]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[22]  Schoeller Leitfaden der theoretischen Chemie. Von Prof. W. Herz. Verlag von Ferdinand Enke, Stuttgart. Dritte Auflage , 1924 .