First-principles simulations of direct coexistence of solid and liquid aluminum

First-principles calculations based on density-functional theory, with generalized gradient corrections and ultrasoft pseudopotentials, have been used to simulate solid and liquid aluminum in direct coexistence at zero pressure. Simulations have been carried out on systems containing up to 1000 atoms for 15 ps. The points on the melting curve extracted from these simulations are in very good agreement with previous calculations, which employed the same electronic structure method but used an approach based on the explicit calculation of free energies [L. Vocadlo and D. Alfe, Phys. Rev. B 65, 214105 (2002)].

[1]  W. Foulkes,et al.  Ab initio calculations of the cohesive energy and the bulk modulus of aluminium , 2002 .

[2]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[3]  Xueyu Song,et al.  The melting lines of model systems calculated from coexistence simulations , 2002 .

[4]  M. Gillan,et al.  Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core , 2001, cond-mat/0111431.

[5]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[6]  M. Gillan,et al.  Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations , 2001, cond-mat/0107307.

[7]  P. Madden,et al.  Ab initio determination of the melting point of aluminum by thermodynamic integration , 2000 .

[8]  P. Madden,et al.  Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation , 2000 .

[9]  G. Chiarotti,et al.  Physics of iron at Earth's core conditions , 2000, Science.

[10]  Börje Johansson,et al.  Quasi-Ab initio molecular dynamic study of Fe melting , 2000, Physical review letters.

[11]  M. Gillan,et al.  The melting curve of iron at the pressures of the Earth's core from ab initio calculations , 1999, Nature.

[12]  M. Gillan,et al.  Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions , 1999, cond-mat/9908400.

[13]  D. Alfé Ab initio molecular dynamics, a simple algorithm for charge extrapolation , 1999 .

[14]  M. Gillan,et al.  First-order phase transitions by first-principles free-energy calculations: the melting of Al , 1998 .

[15]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[16]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[17]  Car,et al.  Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. , 1995, Physical review letters.

[18]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[19]  Wills,et al.  Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum. , 1994, Physical review. B, Condensed matter.

[20]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[21]  Davenport,et al.  Free-energy calculations and the melting point of Al. , 1992, Physical review. B, Condensed matter.

[22]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[23]  Broughton,et al.  Phase diagram of silicon by molecular dynamics. , 1987, Physical review. B, Condensed matter.

[24]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[25]  D. Young,et al.  Theoretical study of the aluminum melting curve to very high pressure , 1984 .

[26]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[27]  A R Plummer Introduction to Solid State Physics , 1967 .

[28]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .