Codes Correcting a Burst of Deletions or Insertions

This paper studies codes that correct a burst of deletions or insertions. Namely, a code will be called a <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula><italic>-burst-deletion/insertion-correcting code</italic> if it can correct a burst of deletions/insertions of any <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula> consecutive bits. While the lower bound on the redundancy of such codes was shown by Levenshtein to be asymptotically <inline-formula> <tex-math notation="LaTeX">$\log (n)+b-1$ </tex-math></inline-formula>, the redundancy of the best code construction by Cheng <italic>et al.</italic> is <inline-formula> <tex-math notation="LaTeX">$b(\log (n/b+1))$ </tex-math></inline-formula>. In this paper, we close on this gap and provide codes with redundancy at most <inline-formula> <tex-math notation="LaTeX">$\log (n) + (b-1)\log (\log (n)) +b -\log (b)$ </tex-math></inline-formula>. We first show that the models of insertions and deletions are equivalent and thus it is enough to study codes correcting a burst of deletions. We then derive a non-asymptotic upper bound on the size of <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula>-burst-deletion-correcting codes and extend the burst deletion model to two more cases: 1) a deletion burst of at most <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula> consecutive bits and 2) a deletion burst of size at most <inline-formula> <tex-math notation="LaTeX">$b$ </tex-math></inline-formula> (not necessarily consecutive). We extend our code construction for the first case and study the second case for <inline-formula> <tex-math notation="LaTeX">$b=3,4$ </tex-math></inline-formula>.

[1]  Daniel Cullina,et al.  A coloring approach to constructing deletion correcting codes from constant weight subgraphs , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[2]  Kristiyan Haralambiev,et al.  On Multiple Deletion Codes , 2007, Serdica Journal of Computing.

[3]  Khaled A. S. Abdel-Ghaffar,et al.  Codes for correcting three or more adjacent deletions or insertions , 2014, 2014 IEEE International Symposium on Information Theory.

[4]  Eitan Yaakobi,et al.  Codes correcting a burst of deletions or insertions , 2016, ISIT.

[5]  Khaled A. S. Abdel-Ghaffar,et al.  A Multiple Insertion/Deletion Correcting Code for Run-Length Limited Sequences , 2012, IEEE Transactions on Information Theory.

[6]  Khaled A. S. Abdel-Ghaffar,et al.  On Helberg's Generalization of the Levenshtein Code for Multiple Deletion/Insertion Error Correction , 2012, IEEE Transactions on Information Theory.

[7]  N.J.A. Sloane,et al.  On Single-Deletion-Correcting Codes , 2002, math/0207197.

[8]  G. Tenengolts,et al.  Nonbinary codes, correcting single deletion or insertion , 1984, IEEE Trans. Inf. Theory.

[9]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[10]  Albertus Stephanus Jacobus Helberg Coding for the correction of synchronization errors , 2014 .

[11]  Kees Schouhamer-Immink Coding Techniques for Digital Recorders , 1991 .

[12]  Jaein Jeong,et al.  Forward Error Correction in Sensor Networks , 2003 .

[13]  Hendrik C. Ferreira,et al.  On multiple insertion/Deletion correcting codes , 2002, IEEE Trans. Inf. Theory.

[14]  Mark Schilling,et al.  The Surprising Predictability of Long Runs , 2012 .

[15]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[16]  Mark Schilling,et al.  The Longest Run of Heads , 1990 .

[17]  Ankur A. Kulkarni,et al.  Nonasymptotic Upper Bounds for Deletion Correcting Codes , 2012, IEEE Transactions on Information Theory.

[18]  Michel Loève,et al.  Probability Theory I , 1977 .

[19]  Ling Cheng Coding techniques for insertion/deletion error correction , 2012 .

[20]  Venkatesan Guruswami,et al.  Efficient Low-Redundancy Codes for Correcting Multiple Deletions , 2015, IEEE Transactions on Information Theory.