On Efficient Modelling of Wheel-Rail Contact in Vehicle Dynamics Simulation

The wheel-rail contact is at the core of all research related to vehicletrackinteraction. This tiny interface governs the dynamic performanceof rail vehicles through the forces it transmits and, li ...

[1]  Klaus Knothe,et al.  Normal and tangential contact problem of surfaces with measured roughness , 2002 .

[2]  M. Berg,et al.  Impact of non-elliptic contact modelling in wheel wear simulation , 2008 .

[3]  Roger Enblom,et al.  Prediction model for wheel profile wear and rolling contact fatigue , 2011 .

[4]  Gabor Müller,et al.  Physical processes in wheel–rail contact and its implications on vehicle–track interaction , 2015 .

[5]  Elena Kabo,et al.  An engineering model for prediction of rolling contact fatigue of railway wheels , 2002 .

[6]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[7]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[8]  Christian Linder Verschleiss von Eisenbahnrädern mit Unrundheiten , 1997 .

[9]  Hiroyuki Sugiyama,et al.  Railroad Vehicle Dynamics: A Computational Approach , 2007 .

[10]  Pierre-Etienne Gautier,et al.  Assessment of a semi-Hertzian method for determination of wheel–rail contact patch , 2006 .

[11]  O. Polách Creep forces in simulations of traction vehicles running on adhesion limit , 2005 .

[12]  Tomas Jendel,et al.  Prediction of wheel profile wear—comparisons with field measurements , 2002 .

[13]  R. Lewis,et al.  Application of Fastsim with variable coefficient of friction using twin disc experimental measurements , 2012 .

[14]  Sabine Damme Zur Finite-Element-Modellierung des stationären Rollkontakts von Rad und Schiene , 2006 .

[15]  E. A. H. Vollebregt,et al.  FASTSIM with Falling Friction and Friction Memory , 2015 .

[16]  Hugues Chollet,et al.  Wheel – Rail Contact , 2006 .

[17]  Klaus Knothe A contribution to the calculation of the contact stress distribution between two elastic bodies of revolution with non-elliptical contact area , 1984 .

[19]  Simon Iwnicki,et al.  Assessing the accuracy of different simplified frictional rolling contact algorithms , 2012 .

[20]  Klaus Knothe,et al.  History of wheel/rail contact mechanics: from Redtenbacher to Kalker , 2008 .

[21]  K. Johnson,et al.  Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces , 1964 .

[22]  Klaus Knothe,et al.  Advanced Contact Mechanics–Road and Rail , 2001 .

[23]  Michel Sebes,et al.  A fast-simplified wheel–rail contact model consistent with perfect plastic materials , 2012 .

[24]  Klaus Knothe,et al.  A method for the analysis of the tangential stresses and the wear distribution between two elastic bodies of revolution in rolling contact , 1985 .

[25]  Jens C. O. Nielsen,et al.  Assessment of methods for calculating contact pressure in wheel–rail/switch contact , 2006 .

[26]  J. Barbera,et al.  Contact mechanics , 1999 .

[27]  Yi Zhu Adhesion in the wheel-rail contact , 2013 .

[28]  H. Fromm,et al.  Berechnung des Schlupfes beim Rollen deformierbarer Scheiben , 1927 .

[29]  Roger Enblom,et al.  Prediction of wheel profile wear and rolling contact fatigue for the Stockholm commuter train , 2010 .

[30]  Jerzy Piotrowski,et al.  A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations , 2008 .

[31]  Guus Segal,et al.  Solving conformal wheel–rail rolling contact problems , 2014 .

[32]  Yi Zhu,et al.  Tribology of the wheel–rail contact – aspects of wear, particle emission and adhesion , 2013 .

[33]  S. Y. Poon An experimental study of the shear traction distribution in rolling with spin , 1967 .

[34]  J. P. Pascal,et al.  The Available Methods to Calculate the Wheel/Rail Forces in Non Hertzian Contact Patches and Rail Damaging , 1993 .

[35]  J. J. Kalker,et al.  Rolling contact phenomena: Linear elasticity , 2000 .

[36]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[37]  Zili Li,et al.  Wheel-Rail Rolling Contact and Its Application to Wear Simulation , 2002 .

[38]  T. Telliskivi Simulation of wear in a rolling-sliding contact by a semi-Winkler model and the Archard's wear law , 2004 .

[39]  Astrid Pieringer,et al.  Time-domain modelling of high-frequency wheel/rail interaction , 2011 .

[40]  Zili Li,et al.  The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: Validation and error analysis , 2011 .

[41]  J. K. Hedrick,et al.  A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis , 1983 .

[42]  K. Johnson,et al.  Three-Dimensional Elastic Bodies in Rolling Contact , 1990 .

[43]  P. Wriggers Computational contact mechanics , 2012 .

[44]  Jerzy Piotrowski Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy , 2010 .

[45]  E. Ollerton,et al.  Contact Stress Distributions on Elliptical Contact Surfaces Subjected to Radial and Tangential Forces , 1963 .

[46]  Rob Dwyer-Joyce,et al.  Experimental Characterization of Wheel-Rail Contact Patch Evolution , 2006 .

[47]  A Alonso,et al.  Introduction of a friction coefficient dependent on the slip in the FastSim algorithm , 2005 .

[48]  J. G. Giménez,et al.  Wheel–rail contact: Roughness, heat generation and conforming contact influence , 2008 .

[49]  J. P. Pascal,et al.  The “Rigid-Multi-Hertzian Method” as Applied to Conformal Contacts , 2007 .

[50]  Ulf Olofsson,et al.  Contact mechanics analysis of measured wheel-rail profiles using the finite element method , 2001 .

[51]  K. Knothe,et al.  Rail Vehicle Dynamics , 2016 .

[52]  Saeed Abbasi Towards elimination of airborne particles from rail traffic , 2013 .

[53]  Wenyi Yan,et al.  Applicability of the Hertz contact theory to rail-wheel contact problems , 2000 .

[54]  Christian Schindler,et al.  Geometry and Compressive Stresses in Wheel/Rail Contact , 2012 .

[55]  A. Alonso,et al.  A new method for the solution of the normal contact problem in the dynamic simulation of railway vehicles , 2005 .

[56]  J. J. Kalker,et al.  The computation of three‐dimensional rolling contact with dry friction , 1979 .

[57]  F. W. Carter,et al.  On the action of a locomotive driving wheel , 1926 .

[58]  J B Ayasse,et al.  Determination of the wheel rail contact patch in semi-Hertzian conditions , 2005 .

[59]  B. Paul,et al.  Contact Pressures on Closely Conforming Elastic Bodies , 1981 .

[60]  Ulf Olofsson,et al.  Wheel-Rail Interface Handbook , 2009 .

[61]  R. Lewisa,et al.  Wear mechanisms and transitions in railway wheel steels , 2004 .

[62]  Oldrich Polach,et al.  Creep force modelling for rail traction vehicles based on the Fastsim algorithm , 2013 .

[63]  Oldrich Polach,et al.  A Fast Wheel-Rail Forces Calculation Computer Code , 2021, The Dynamics of Vehicles on Roads and on Tracks.

[64]  E. Vollebregt,et al.  Numerical modeling of measured railway creep versus creep-force curves with CONTACT , 2014 .

[65]  Anders Ekberg,et al.  The development of a crack propagation model for railway wheels and rails , 2015 .

[66]  Babette Dirks,et al.  Simulation and Measurement of Wheel on Rail Fatigue and Wear , 2015 .

[67]  Francesco Aymerich,et al.  Distribution of contact pressure in wheel-rail contact area , 2000 .

[68]  Rolf Dollevoet,et al.  Influence of wheel–rail contact modelling on vehicle dynamic simulation , 2015 .

[69]  Martin Ertz,et al.  Improved Creep Force Model for Wheel/Rail Contact Considering Roughness and Temperature , 2002 .

[70]  Jerzy Piotrowski,et al.  Wheel–rail contact models for vehicle system dynamics including multi-point contact , 2005 .

[71]  Zili Li,et al.  A new rolling contact method applied to conformal contact and the train–turnout interaction , 2014 .