On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form

In this note, the problem of determining necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a pair of stable linear time-invariant systems whose system matrices A/sub 1/ and A/sub 2/ are in companion form is considered. It is shown that a necessary and sufficient condition for the existence of such a function is that the matrix product A/sub 1/A/sub 2/ does not have an eigenvalue that is real and negative. Examples are presented to illustrate the result.

[1]  K. Narendra,et al.  A sufficient condition for the existence of a common Lyapunov function for two second order linear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[2]  Biqing Wu,et al.  A magnitude/phase-locked loop approach to parameter estimation of periodic signals , 2003, IEEE Trans. Autom. Control..

[3]  A. Berman,et al.  Positive diagonal solutions to the Lyapunov equations , 1978 .

[4]  Robert Shorten,et al.  On the Dynamic Instability of a Class of Switching System , 2000 .

[5]  H. Bart,et al.  Simultaneous reduction to companion and triangular forms of sets of matrices , 1990 .

[6]  Arjan van der Schaft,et al.  Open Problems in Mathematical Systems and Control Theory , 1999 .

[7]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[8]  J. Willems The circle criterion and quadratic Lyapunov functions for stability analysis , 1973 .

[9]  Siegfried M. Rump,et al.  Conservatism of the circle criterion-solution of a problem posed by A. Megretski , 2001, IEEE Trans. Autom. Control..

[10]  Sergio M. Savaresi,et al.  Unbiased estimation of a sinusoid in colored noise via adapted notch filters , 1997, Autom..

[11]  Arye Nehorai A minimal parameter adaptive notch filter with constrained poles and zeros , 1985, IEEE Trans. Acoust. Speech Signal Process..

[12]  T. Andô,et al.  Set of matrices with common Lyapunov solution , 2001 .

[13]  Marc Bodson,et al.  Performance of an adaptive algorithm for sinusoidal disturbance rejection in high noise , 2001, Autom..

[14]  Srdjan S. Stankovic,et al.  An adaptive notch filter with improved tracking properties , 1995, IEEE Trans. Signal Process..

[15]  K. Narendra,et al.  A Geometrical Criterion for the Stability of Certain Nonlinear Nonautonomous Systems , 1964 .

[16]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[18]  Raphael Loewy,et al.  On ranges of real Lyapunov transformations , 1976 .