Transient dynamics of a dispersive elastic wave guide weakly coupled to an essentially nonlinear end attachment

[1]  Alexander F. Vakakis,et al.  Transient resonant interactions of finite linear chains with essentially nonlinear end attachments leading to passive energy pumping , 2004 .

[2]  Oleg Gendelman,et al.  Dynamics of linear discrete systems connected to local, essentially non-linear attachments , 2003 .

[3]  A. I. Musienko,et al.  Dynamic interaction of a semi-infinite linear chain of coupled oscillators with a strongly nonlinear end attachment , 2003 .

[4]  Cristel Chandre,et al.  Time–frequency analysis of chaotic systems , 2002, nlin/0209015.

[5]  C. Linton,et al.  Trapped modes for off-centre structures in guides , 2002 .

[6]  Philip Holmes,et al.  Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model , 2002 .

[7]  Z. Qu Model Reduction for Dynamical Systems with Local Nonlinearities , 2002 .

[8]  Leonid I. Manevitch,et al.  The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables , 2001 .

[9]  Oleg Gendelman,et al.  Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture , 2001 .

[10]  Y. K. Cheung,et al.  Localized modes in a two-degree-coupling periodic system with a nonlinear disordered subsystem , 2000 .

[11]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[12]  Pablo Martín,et al.  Two‐point quasifractional approximant in physics: Method improvement and application to Jν(x) , 1992 .

[13]  G. A. Baker,et al.  Two‐point quasifractional approximant in physics. Truncation error , 1991 .

[14]  A. L. Guerrero,et al.  Higher order two-point quasi-fractional approximations to the Bessel functions J o ( X ) and J 1 ( X ) , 1988 .

[15]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[16]  P. Morse,et al.  Methods of theoretical physics , 1955 .