Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures

Abstract In this work, a recently proposed quadratic NURBS-based solid-shell element based on the Assumed Natural Strain (ANS) method is applied in the analysis of shell-like structures in the geometrical nonlinear regime, together with small strain plasticity. The proposed formulation is based on the additive split of the Green–Lagrange strain tensor, leading to a straightforward implementation of the nonlinear kinematics and to the introduction of a corotational coordinate system, used to integrate the constitutive law, ensuring incremental objectivity. Since the proposed approach is based on Updated Lagrangian formulation combined with a corotational coordinate system, the extension of the ANS methodology is straightforward. Well-known benchmark tests are employed to assess the performance of the proposed formulation and to establish a detailed comparison with the formulations available in the literature. The results indicate that the proposed solid-shell approach based on the NURBS ANS methodology presents good predictability characteristics in the analysis of elasto-plastic thin-shell structures subjected to large deformations.

[1]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[2]  J. F. Caseiro,et al.  On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements , 2014 .

[3]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[4]  R. M. Natal Jorge,et al.  On the use of an enhanced transverse shear strain shell element for problems involving large rotations , 2003 .

[5]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[6]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[7]  T. Hughes Numerical Implementation of Constitutive Models: Rate-Independent Deviatoric Plasticity , 1984 .

[8]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[9]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[10]  K. Bathe Finite Element Procedures , 1995 .

[11]  Y. Başar,et al.  Finite-rotation shell elements via mixed formulation , 1992 .

[13]  Alain Combescure,et al.  Locking free isogeometric formulations of curved thick beams , 2012 .

[14]  K. Bathe,et al.  A FORMULATION OF GENERAL SHELL OF TENSORIAL COMPONENTSt ELEMENTS-THE USE OF MIXED INTERPOLATION , 1986 .

[15]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Geometrically linear problems , 2009 .

[16]  G. S. Sekhon,et al.  Large Deformation -I , 2003 .

[17]  J. M. A. César de Sá,et al.  The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids , 2012 .

[18]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[19]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[20]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[21]  Chahngmin Cho,et al.  Stability analysis using a geometrically nonlinear assumed strain solid shell element model , 1998 .

[22]  Peter Wriggers,et al.  Thin shells with finite rotations formulated in biot stresses : theory and finite element formulation , 1993 .

[23]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[24]  Anders Eriksson,et al.  Element formulation and numerical techniques for stability problems in shells , 2002 .

[25]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[26]  R. M. Natal Jorge,et al.  An enhanced strain 3D element for large deformation elastoplastic thin-shell applications , 2004 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[29]  Mingrui Li,et al.  The finite deformation theory for beam, plate and shell Part I. The two-dimensional beam theory , 1997 .

[30]  Peter Wriggers,et al.  Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis , 1999 .

[31]  Jeong Whan Yoon,et al.  A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness: Part I—geometrically linear applications , 2005 .

[32]  Stefanie Reese,et al.  A large deformation solid‐shell concept based on reduced integration with hourglass stabilization , 2007 .

[33]  R. L. Taylor Isogeometric analysis of nearly incompressible solids , 2011 .

[34]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[35]  Carlo Sansour,et al.  On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom , 1998 .

[36]  Sven Klinkel,et al.  A robust non-linear solid shell element based on a mixed variational formulation , 2006 .

[37]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[38]  Christian Miehe,et al.  A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains , 1998 .

[39]  R. Hauptmann,et al.  `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials , 2001 .

[40]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[41]  B. Brank,et al.  On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells , 1995 .

[42]  Valente Robertt Angelo Fontes Developments on Shell and Solid-Shell finite elements technology in nonlinear continuum mechanics , 2013 .

[43]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[44]  Jeong Whan Yoon,et al.  Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one‐point quadrature solid‐shell elements , 2008 .

[45]  Jeong Whan Yoon,et al.  A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness—part II: nonlinear applications , 2006 .

[46]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[47]  Arif Masud,et al.  A stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells , 2000 .

[48]  P. G. Bergan,et al.  Nonlinear analysis of free-form shells by flat finite elements , 1978 .

[49]  J. C. Simo,et al.  Formulation and computational aspects of a stress resultant geometrically exact shell model , 1990 .

[50]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[51]  D. Chandrasekharaiah,et al.  Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects , 2000 .

[52]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[53]  R. D. Krieg,et al.  On the numerical implementation of inelastic time dependent and time independent, finite strain constitutive equations in structural mechanics☆ , 1982 .

[54]  S. A. Meguid,et al.  A new shell element accounting for through-thickness deformation , 2000 .

[55]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[56]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Large deformation problems , 2011 .

[57]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[58]  Mingrui Li,et al.  The finite deformation theory for beam, plate and shell. Part V. The shell element with drilling degree of freedom based on Biot strain , 2000 .

[59]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[60]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[61]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[62]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[63]  A. Combescure,et al.  Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method , 2013 .

[64]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[65]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .