Planckearly results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations

We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-tonoise in the first Planck all-sky data set. The sample spans approximately a decade in total mass, 2 × 10 14 M� < M500 < 2 × 10 15 M� ,w hereM500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D 2 Y500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass Mg,500, temperature TX, luminosity LX,500, SZ signal analogue YX,500 = Mg,500 ×TX, and total mass M500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck’s unique capabilities for all-sky statistical studies of galaxy clusters.

R. B. Barreiro | Jean-Luc Starck | J. Tuovinen | R. Laureijs | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | S. Colombi | A. Melchiorri | O. Forni | T. Ensslin | E. Hivon | A. Banday | M. Hobson | A. Challinor | A. Lasenby | B. Wandelt | F. Bouchet | M. Bartelmann | A. Balbi | J. Borrill | A. Jaffe | C. Netterfield | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | A. Coulais | T. Poutanen | A. Gregorio | M. Ashdown | S. Henrot-Versillé | B. Rusholme | E. Pierpaoli | T. Kisner | L. Cayón | S. Plaszczynski | A. Liddle | H. Nørgaard-Nielsen | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | M. Bersanelli | A. Bonaldi | M. Bucher | C. Burigana | A. Catalano | A. Chamballu | L. Chiang | D. Clements | F. Cuttaia | L. Danese | G. Zotti | J. Delabrouille | S. Donzelli | X. Dupac | F. Finelli | E. Franceschi | S. Galeotta | M. Giard | G. Giardino | S. Gratton | A. Gruppuso | D. Herranz | W. Holmes | W. Hovest | K. Huffenberger | R. Keskitalo | R. Kneissl | J. Lamarre | S. Leach | R. Leonardi | M. Linden-Vørnle | P. Lubin | B. Maffei | D. Maino | M. Maris | F. Matthai | P. Mazzotta | L. Mendes | A. Mennella | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | P. Natoli | F. Noviello | D. Novikov | S. Osborne | F. Pajot | G. Patanchon | O. Perdereau | L. Perotto | M. Piat | E. Pointecouteau | G. Polenta | N. Ponthieu | G. Pratt | J. Puget | J. Rachen | C. Renault | T. Riller | I. Ristorcelli | C. Rosset | M. Sandri | D. Santos | G. Savini | M. Seiffert | R. Sudiwala | J. Sygnet | J. Tauber | L. Terenzi | M. Tomasi | M. Tristram | P. Vielva | F. Villa | N. Vittorio | L. Wade | D. Yvon | A. Zonca | F. Désert | L. Vibert | K. Dolag | J. Melin | V. Stolyarov | H. Dahle | Y. Giraud-Héraud | J. González-Nuevo | M. López-Caniego | J. Macías-Pérez | G. Prezeau | G. Gasperis | E. Keihänen | N. Mandolesi | P. Cabella | R. Hoyland | S. Colafrancesco | R. Bhatia | J. Torre | I. Flores-Cacho | E. Churazov | R. Piffaretti | H. Bourdin | F. Marleau | S. Matarrese | S. Fromenteau | R. Génova-Santos | F. Stivoli | U. Dörl | A. Murphy | S. Ricciardi | C. Chiang | P. Shellard | P. Christensen | Michael L. Brown | B. Schaefer | R. Sunyaev | C. Hernández-Monteagudo | K. Górski | F. Couchot | C. MacTavish | R. Rebolo | J. Lanoux | S. Hildebrandt | G. Chon | S. Mitra | A. Silva | E. Martinez-Gonzalez | P. Bernardis | D. Scott | A. D. Rosa | O. Doré | S. D. M. White | L. Toffolatti | P. Ade | J. Bock | G. Rocha | J. G. Bartlett | J. Bernard | J. Cardoso | L. Knox | G. Lagache | I. Novikov | F. Perrotta | M. Reinecke | M. White | J. Rubiño-Martín | G. Smoot | R. Mann | J. Bond | D. Harrison | C. Lawrence | D. Scott | C. Rosset | S. White

[1]  U. Schwanke,et al.  Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5 , 2011, Astronomy &amp; Astrophysics.

[2]  G. W. Pratt,et al.  Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1 , 2011, 1106.1376.

[3]  R. B. Barreiro,et al.  Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance , 2011, 1101.2039.

[4]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[5]  G. Giardino,et al.  Planck early results. V. The Low Frequency Instrument data processing , 2011, 1101.2040.

[6]  P. A. R. Ade,et al.  Planckearly results. XXV. Thermal dust in nearby molecular clouds , 2011, Astronomy &amp; Astrophysics.

[7]  R. B. Barreiro,et al.  Planckearly results. XII. Cluster Sunyaev-Zeldovich optical scaling relations , 2011, Astronomy &amp; Astrophysics.

[8]  R. B. Barreiro,et al.  Planckearly results. XXIII. The first all-sky survey of Galactic cold clumps , 2011, Astronomy &amp; Astrophysics.

[9]  R. B. Barreiro,et al.  Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps , 2011, 1101.2034.

[10]  R. B. Barreiro,et al.  Planck early results. II. The thermal performance of Planck , 2011, 1101.2023.

[11]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[12]  R. B. Barreiro,et al.  Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies , 2011, 1101.2028.

[13]  R. B. Barreiro,et al.  Planck early results. IX. XMM-Newton follow-up for validation of Planck cluster candidates , 2011, 1101.2025.

[14]  R. B. Barreiro,et al.  Planck early results. XXI. Properties of the interstellar mediumin the Galactic plane , 2011, 1101.2032.

[15]  R. B. Barreiro,et al.  Planck early results - VIII. The all-sky early Sunyaev-Zeldovich cluster sample , 2011, 1101.2024.

[16]  R. B. Barreiro,et al.  Planck early results. XVI. The Planck view of nearby galaxies , 2011, 1101.2045.

[17]  R. B. Barreiro,et al.  Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds , 2011, 1101.2046.

[18]  R. B. Barreiro,et al.  Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources , 2011, 1101.2047.

[19]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[20]  Julian Borrill,et al.  Planck pre-launch status: Expected LFI polarisation capability , 2010 .

[21]  T. Maciaszek,et al.  Planck pre-launch status: The HFI instrument, from specification to actual performance , 2010 .

[22]  James J. Bock,et al.  Planck Pre-Launch Status: The Planck Mission , 2010 .

[23]  G. W. Pratt,et al.  The MCXC: a meta-catalogue of x-ray detected clusters of galaxies , 2010, 1007.1916.

[24]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[25]  P. Ade,et al.  Planck pre-launch status: High Frequency Instrument polarization calibration , 2010, 1004.2595.

[26]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[27]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[28]  J. P. Pascual,et al.  Planck pre-launch status: Design and description of the Low Frequency Instrument , 2010, 1001.3321.

[29]  G. Giardino,et al.  Planck pre-launch status: the Planck-LFI programme , 2010, 1001.2657.

[30]  J. Bartlett,et al.  The galaxy cluster YSZ−LX and YSZ−M relations from the WMAP 5-yr data , 2010, 1001.0871.

[31]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[32]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[33]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[34]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[35]  Amber D. Miller,et al.  LoCuSS: A COMPARISON OF SUNYAEV–ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS , 2009, 0907.1687.

[36]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[37]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[38]  N. Aghanim,et al.  Cluster scaling relations from cosmological hydrodynamic simulations in a dark-energy dominated universe , 2008, 0808.0385.

[39]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[40]  S. Molendi,et al.  Radial temperature profiles for a large sample of galaxy clusters observed with XMM-Newton , 2008, 0804.1909.

[41]  P. Ricker,et al.  The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel’dovich Effect , 2008, 0802.3695.

[42]  P. Mazzotta,et al.  Temperature structure of the intergalactic medium within seven nearby and bright clusters of galaxies observed with XMM-Newton , 2008, 0802.1866.

[43]  M. Donahue,et al.  Galaxy-cluster gas-density distributions of the Representative XMM-Newton Cluster Structure Survey (REXCESS) , 2008, 0801.3430.

[44]  H Germany,et al.  Calibration of the galaxy cluster M-500-Υ-x relation with XMM-Newton , 2007, 0709.1561.

[45]  M. Norman,et al.  Why Do Only Some Galaxy Clusters Have Cool Cores? , 2007, 0708.1954.

[46]  J. Carlstrom,et al.  Scaling Relations from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2007, 0708.0815.

[47]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[48]  L. Guzzo,et al.  The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample , 2007, astro-ph/0703553.

[49]  B. Maughan The LX-YX Relation: Using Galaxy Cluster X-Ray Luminosity as a Robust, Low-Scatter Mass Proxy , 2007, astro-ph/0703504.

[50]  T. Shanks,et al.  Anomalous SZ Contribution to 3 Year WMAP Data , 2007, astro-ph/0703470.

[51]  Yen-Ting Lin,et al.  Missing thermal energy of the intracluster medium , 2006, astro-ph/0612700.

[52]  S. Borgani,et al.  Temperature profiles of a representative sample of nearby X-ray galaxy clusters , 2006, astro-ph/0609480.

[53]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[54]  N. Aghanim,et al.  Small scale contributions to CMB: A coherent analysis , 2006, astro-ph/0601597.

[55]  D. Nagai,et al.  The Impact of Galaxy Formation on the Sunyaev-Zel'dovich Effect of Galaxy Clusters , 2005, astro-ph/0512208.

[56]  J. Mittaz,et al.  The Sunyaev-Zel’dovich Effect in a Sample of 31 Clusters: A Comparison between the X-Ray Predicted and WMAP Observed Cosmic Microwave Background Temperature Decrement , 2005, astro-ph/0510160.

[57]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[58]  H Germany,et al.  The structural and scaling properties of nearby galaxy clusters. II. The M-T relation , 2005, astro-ph/0502210.

[59]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[60]  N. Aghanim,et al.  Trouble for cluster parameter estimation from blind SZ surveys , 2004, astro-ph/0402571.

[61]  A. Kosowsky The Atacama Cosmology Telescope , 2003, astro-ph/0402234.

[62]  M. White,et al.  Simulating the Sunyaev-Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds , 2002, astro-ph/0205437.

[63]  J. A. Aguilar-Saavedra Top flavour-changing neutral coupling signals at a linear collider , 2000, hep-ph/0012305.

[64]  E. Pointecouteau,et al.  Extended Sunyaev-Zeldovich Map of the Most Luminous X-Ray Cluster, RX J1347–1145 , 2000, astro-ph/0012309.

[65]  E. Komatsu,et al.  Substructures Revealed by the Sunyaev–Zel’dovich Effect at 150 GHz in a High-Resolution Map of RX J1347$-$1145 , 2000, astro-ph/0006293.

[66]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[67]  A. Liddle,et al.  Hydrodynamical simulations of the Sunyaev-Zel'dovich effect , 1999, astro-ph/9907224.

[68]  N. Aghanim,et al.  A Sunyaev-Zeldovich Map of the Massive Core in the Luminous X-Ray Cluster RX J1347–1145 , 1999, astro-ph/9905139.

[69]  E. Komatsu,et al.  Submillimeter Detection of the Sunyaev-Zeldovich Effect toward the Most Luminous X-Ray Cluster at z = 0.45 , 1999, astro-ph/9902351.

[70]  D. Bock,et al.  SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1998, astro-ph/9812083.

[71]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[72]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[73]  A. Evrard,et al.  Mass estimates of X-ray clusters , 1995, astro-ph/9510058.

[74]  A. Edge,et al.  Cooling flows and the X-ray luminosity–temperature relation for clusters , 1994 .

[75]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[76]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[77]  R. Joynt Department , 1960, Neurology.

[78]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[79]  R. B. Barreiro,et al.  Planck Early Results : Dust in the diffuse interstellar medium and the Galactic halo , 2012 .

[80]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XX . New light on anomalous microwave emission from spinning dust grains , 2011 .

[81]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . VII . The Early Release Compact Source Catalogue , 2011 .

[82]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . X . Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters , 2011 .

[83]  R. B. Barreiro,et al.  Planck early results. XXIII. The first all-sky survey of Galactic cold clumps , 2011 .

[84]  東北大学グローバルCOEプログラム. 新世紀世界の成長焦点に築くナノ医工学拠点 GEM4参加報告書集2008 : GEM4 summer school on cell and molecular mechanics in biomecidine [i.e. biomedicine] with a focus on cardiovascular systems : July 21-25, 2008, California institute of technology, Pasadena, California, USA , 2008 .

[85]  I. Mackenzie,et al.  British Columbia, , 2007 .

[86]  Vikhlinin Kravtsov A New Robust Low-scatter X-ray Mass Indicator for Clusters of Galaxies , 2006 .

[87]  Jack O. Burns,et al.  Accepted to ApJ Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE INTEGRATED SUNYAEV-ZELDOVICH EFFECT AS THE SUPERIOR METHOD FOR MEASURING THE MASS OF CLUSTERS OF GALAXIES , 2005 .

[88]  Paul Murdin,et al.  Space Research Institute , 2001 .

[89]  Departamento de Física,et al.  DEPARTAMENTO DE FISICA , 1997 .

[90]  C. Jones,et al.  The structure of clusters of galaxies observed with Einstein , 1984 .