Gate Line Edge Roughness Model for Estimation of FinFET Performance Variability

We present a model for estimating the impact of gate line edge roughness (LER) on the performance of double-gate (DG) FinFET devices. Thirteen-nanometer-gate-length DG FinFETs are investigated using a framework that links device performance to commonly used LER descriptors, namely, correlation length (xi), rms amplitude or standard deviation (sigma) of the line edge from its mean value, and roughness exponent ( alpha). Our approach provides physical insight into how LER impacts FinFET performance. In addition, our modeling approach is more efficient than Monte Carlo TCAD simulations and provides comparable results with appropriately selected input parameters. The FinFET device architecture is found to be robust to gate LER effects. Furthermore, a spacer-defined gate electrode (versus a resist-defined gate electrode) provides for reduced variability in performance, indicating that the gate length mismatch has more impact than lateral offset between the front and the back gates.

[1]  J. Bokor,et al.  Reliability study of CMOS FinFETs , 2003, IEEE International Electron Devices Meeting 2003.

[2]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[3]  P.C.H. Chan,et al.  Impact of non-vertical sidewall on sub-50 nm FinFET , 2003, 2003 IEEE International Conference on SOI.

[4]  E. Gogolides,et al.  Line edge roughness and critical dimension variation: Fractal characterization and comparison using model functions , 2004 .

[5]  W. Fichtner,et al.  A Full 3D TCAD Simulation Study of Line-Width Roughness Effects in 65 nm Technology , 2006, 2006 International Conference on Simulation of Semiconductor Processes and Devices.

[6]  Ji-Woon Yang,et al.  Highly Manufacturable Double-Gate FinFET With Gate-Source/Drain Underlap , 2007, IEEE Transactions on Electron Devices.

[7]  H. Namatsu,et al.  Line-Edge Roughness: Characterization and Material Origin , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[8]  Wolfgang Rösner,et al.  Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results , 2006 .

[9]  J. G. Fossum,et al.  Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs , 2002 .

[10]  Shinji Okazaki,et al.  Correlation of Nano Edge Roughness in Resist Patterns with Base Polymers , 1993 .

[11]  M. Ieong,et al.  Modeling line edge roughness effects in sub 100 nanometer gate length devices , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[12]  Chenming Hu,et al.  Sub-60-nm quasi-planar FinFETs fabricated using a simplified process , 2001, IEEE Electron Device Letters.

[13]  W. Sansen,et al.  Line edge roughness: characterization, modeling and impact on device behavior , 2002, Digest. International Electron Devices Meeting,.

[14]  Palasantzas,et al.  Roughness spectrum and surface width of self-affine fractal surfaces via the K-correlation model. , 1993, Physical review. B, Condensed matter.

[15]  Chih-Hong Hwang,et al.  Effect of Fin Angle on Electrical Characteristics of Nanoscale Round-Top-Gate Bulk FinFETs , 2007, IEEE Transactions on Electron Devices.

[16]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .

[17]  Tsu-Jae King,et al.  Improvement of FinFET electrical characteristics by hydrogen annealing , 2004, IEEE Electron Device Letters.

[18]  M. Jurczak,et al.  Impact of LER and Random Dopant Fluctuations on FinFET Matching Performance , 2008, IEEE Transactions on Nanotechnology.

[19]  Osama M. Nayfeh,et al.  Calibrated Hydrodynamic Simulation of Deeply-Scaled Well-Tempered Nanowire Field Effect Transistors , 2007 .

[20]  V. Trivedi,et al.  Pragmatic design of nanoscale multi-gate CMOS , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[21]  Evangelos Gogolides,et al.  Correlation length and the problem of line width roughness , 2007, SPIE Advanced Lithography.

[22]  E. Suzuki,et al.  Characterization of metal-gate FinFET variability based on measurements and compact model analyses , 2008, 2008 IEEE International Electron Devices Meeting.

[23]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[24]  Borivoje Nikolic,et al.  Circuit-Performance Implications for Double-Gate MOSFET Scaling below 25 nm , 2003 .

[25]  A. Mercha,et al.  Impact of line width roughness on the matching performances of next-generation devices , 2008 .

[26]  Evangelos Gogolides,et al.  Characterization and modeling of line width roughness (LWR) , 2005, SPIE Advanced Lithography.