Insights into a spatially embedded social network from a large-scale snowball sample

Abstract Much research has been conducted to obtain insights into the basic laws governing human travel behaviour. While the traditional travel survey has been for a long time the main source of travel data, recent approaches to use GPS data, mobile phone data, or the circulation of bank notes as a proxy for human travel behaviour are promising. The present study proposes a further source of such proxy-data: the social network. We collect data using an innovative snowball sampling technique to obtain details on the structure of a leisure-contacts network. We analyse the network with respect to its topology, the individuals’ characteristics, and its spatial structure. We further show that a multiplication of the functions describing the spatial distribution of leisure contacts and the frequency of physical contacts results in a trip distribution that is consistent with data from the Swiss travel survey.

[1]  James S. Boster,et al.  Estimating relational attributes from snowball samples through simulation , 1989 .

[2]  Fabrice Marchal,et al.  Modeling Location Choice of Secondary Activities with a Social Network of Cooperative Agents , 2005 .

[3]  C. Steglich,et al.  DYNAMIC NETWORKS AND BEHAVIOR: SEPARATING SELECTION FROM INFLUENCE: separating selection from influence , 2010 .

[4]  Rajiv Vaidyanathan,et al.  Dictionary of statistics and methodology : #a #nontechnical guide for the social sciences , 1994 .

[5]  Ove Frank,et al.  CHAPTER 16 – ESTIMATION OF POPULATION TOTALS BY USE OF SNOWBALL SAMPLES , 1979 .

[6]  Erik M. Volz,et al.  Probability based estimation theory for respondent driven sampling , 2008 .

[7]  James H. Liu,et al.  Distance Matters: Physical Space and Social Impact , 1995 .

[8]  R. Gilles,et al.  Spatial social networks , 2000 .

[9]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[10]  Ps Hu SUMMARY OF TRAVEL TRENDS: 2001 NATIONAL HOUSEHOLD TRAVEL SURVEY , 2004 .

[11]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[13]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[14]  Robin I. M. Dunbar Coevolution of neocortical size, group size and language in humans , 1993, Behavioral and Brain Sciences.

[15]  Douglas D. Heckathorn,et al.  Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hi , 2002 .

[16]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[17]  Mark S Handcock,et al.  7. Respondent-Driven Sampling: An Assessment of Current Methodology , 2009, Sociological methodology.

[18]  西田 昌平 Radiative B meson decays into Kπγ and Kππγ final states , 2003 .

[19]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[20]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[21]  P. V. Marsden,et al.  NETWORK DATA AND MEASUREMENT , 1990 .

[22]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[23]  K. Axhausen,et al.  Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model , 2011, BMC infectious diseases.

[24]  K. Axhausen,et al.  Observing the rhythms of daily life: A six-week travel diary , 2002 .

[25]  Julia Silvis,et al.  Travel Diary , 2008 .

[26]  Barry Wellman,et al.  Visualizing Personal Networks: Working with Participant-aided Sociograms , 2007 .

[27]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[28]  Tom A. B. Snijders,et al.  Estimation On the Basis of Snowball Samples: How To Weight? , 1992 .

[29]  Barry Wellman,et al.  Did distance matter before the Internet?: Interpersonal contact and support in the 1970s , 2007, Soc. Networks.

[30]  Igor Sádaba Mobilities , 2009 .

[31]  Siegfried Gabler,et al.  Schneeballverfahren und verwandte Stichprobendesigns , 1992 .

[32]  D. Watts,et al.  Origins of Homophily in an Evolving Social Network1 , 2009, American Journal of Sociology.

[33]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Downloaded from , 1997 .

[35]  James Delleur,et al.  事故危険度による事故分析(Transportation Research Record,910) , 1984 .

[36]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Bonnie H. Erickson,et al.  Some Problems of Inference from Chain Data , 1979 .

[38]  Garry Robins,et al.  A spatial model for social networks , 2006 .

[39]  Ta Theo Arentze,et al.  Social networks, ICT use and activity-travel patterns. Data collection and first analyses , 2008 .

[40]  Kay W. Axhausen,et al.  Processing Raw Data from Global Positioning Systems without Additional Information , 2009 .