Rateless and pollution-attack-resilient network coding

Consider the problem of reliable multicast over a network in the presence of adversarial errors. In contrast to traditional network error correction codes designed for a given network capacity and a given number of errors, we study an arguably more realistic setting that prior knowledge on the network and adversary parameters is not available. For this setting we propose efficient and throughput-optimal error correction schemes, provided that the source and terminals share randomness that is secret form the adversary. We discuss an application of cryptographic pseudorandom generators to efficiently produce the secret randomness, provided that a short key is shared between the source and terminals. Finally we present a secure key distribution scheme for our network setting.

[1]  Christos Gkantsidis,et al.  Cooperative Security for Network Coding File Distribution , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[2]  Michael Langberg,et al.  Adversarial models and resilient schemes for network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[3]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[4]  Danilo Silva Error Control for Network Coding , 2010 .

[5]  Tracey Ho,et al.  Resilient network coding in the presence of Byzantine adversaries , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[6]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[7]  Minghua Chen,et al.  RIPPLE Authentication for Network Coding , 2010, 2010 Proceedings IEEE INFOCOM.

[8]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[9]  Jonathan Katz,et al.  Signing a Linear Subspace: Signature Schemes for Network Coding , 2009, IACR Cryptol. ePrint Arch..

[10]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[11]  Chuang Lin,et al.  Authentication for Network Coding , 2011 .

[12]  Michael Langberg,et al.  Network Codes Resilient to Jamming and Eavesdropping , 2010, IEEE/ACM Transactions on Networking.

[13]  Wentao Huang,et al.  Rateless resilient network coding against byzantine adversaries , 2013, 2013 Proceedings IEEE INFOCOM.

[14]  S. Rajsbaum Foundations of Cryptography , 2014 .

[15]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[16]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[17]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[18]  Frank R. Kschischang,et al.  Universal Secure Network Coding via Rank-Metric Codes , 2008, IEEE Transactions on Information Theory.

[19]  Frédérique E. Oggier,et al.  An Authentication Code Against Pollution Attacks in Network Coding , 2009, IEEE/ACM Transactions on Networking.

[20]  Fang Zhao,et al.  Signatures for Content Distribution with Network Coding , 2007, 2007 IEEE International Symposium on Information Theory.

[21]  Chau Yuen,et al.  A Tag Encoding Scheme against Pollution Attack to Linear Network Coding , 2014, IEEE Transactions on Parallel and Distributed Systems.