Shape optimization with program CARAT

Shape optimal design is the synthesis of structural analysis and mathematical programming combined with computer aided geometric design (CAGD) concepts and behavior sensitivity analysis. This generally accepted idea is realized by CARAT. The underlying models are formulated with special regard to a general overall model of structural optimization which is efficient as well as flexible enough to be applied to shape optimal design of arbitrary shells in three dimensional space. Special emphasis is given to potential optimization algorithms (e.g. an extension of the method of moving asymptotes), practical design capabilities, clearly formulated interactions like variable linking, and modular computer codes. Shape optimizations of an initially axisymmetric shell, a fly-wheel and a bell demonstrate the capabilities of the presented approach.

[1]  Peter Wriggers,et al.  Nonlinear Computational Mechanics: State of the Art , 1991 .

[2]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[3]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[4]  Carlos A. Mota Soares,et al.  Computer Aided Optimal Design: Structural and Mechanical Systems , 1987, NATO ASI Series.

[5]  Richard H. Gallagher,et al.  Optimum Structural Design: Theory and Applications , 1973 .

[6]  Raphael T. Haftka,et al.  Recent developments in structural sensitivity analysis , 1989 .

[7]  E Atrek,et al.  New directions in optimum structural design , 1984 .

[8]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[9]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[10]  Raphael T. Haftka,et al.  Preliminary design of composite wings for buckling, strength and displacement constraints , 1979 .

[11]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[12]  Ajg Bert Schoofs,et al.  Experimental design theory and structural optimization : design of a major-third church bell , 1985 .

[13]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[14]  Gesellschaft für Angewandte Mathematik und Mechanik,et al.  Discretization Methods and Structural Optimization: Procedures and Applications : Proceedings of a Gamm-Seminar October 5-7, 1988, Siegen, Frg , 1989 .

[15]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[16]  G. N. Vanderplaats,et al.  Structural Optimization-Past, Present, and Future , 1981 .

[17]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[18]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[19]  George I. N. Rozvany,et al.  optimization of large structural systems , 1990 .

[20]  Mark E. Botkin,et al.  Optimum Shape: Automated Structural Design , 1986 .

[21]  B. Prasad Explicit constraint approximation forms in structural optimization Part 1: Analyses and projections , 1983 .

[22]  Ekkehard Ramm,et al.  On shape finding methods and ultimate load analyses of reinforced concrete shells , 1991 .

[23]  Stefan Kimmich,et al.  Integration of different numerical techniques in shape optimization , 1992 .

[24]  L. A. Schmit,et al.  Structural synthesis - Its genesis and development , 1981 .

[25]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[26]  Kai-Uwe Bletzinger,et al.  Extended method of moving asymptotes based on second-order information , 1993 .

[27]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[28]  Ekkehard Ramm,et al.  Efficient modeling in shape optimal design , 1991 .