Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils.

We report the synthesis of centimeter-scale monolayer WS2 on gold foil by chemical vapor deposition. The limited tungsten and sulfur solubility in gold foil allows monolayer WS2 film growth on gold surface. To ensure the coverage uniformity of monolayer WS2 film, the tungsten source-coated substrate was placed in parallel with Au foil under hydrogen sulfide atmosphere. The high growth temperature near 935 °C helps to increase a domain size up to 420 μm. Gold foil is reused for the repeatable growth after bubbling transfer. The WS2-based field effect transistor reveals an electron mobility of 20 cm(2) V(-1) s(-1) with high on-off ratio of ∼10(8) at room temperature, which is the highest reported value from previous reports of CVD-grown WS2 samples. The on-off ratio of integrated multiple FETs on the large area WS2 film on SiO2 (300 nm)/Si substrate shows within the same order, implying reasonable uniformity of WS2 FET device characteristics over a large area of 3 × 1.5 cm(2).

[1]  Sungjoo Lee,et al.  Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation. , 2015, ACS nano.

[2]  B. Xiang,et al.  Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition , 2015 .

[3]  Zhongfan Liu,et al.  Monolayer MoS2 Growth on Au Foils and On‐Site Domain Boundary Imaging , 2015 .

[4]  Yeonwoong Jung,et al.  Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. , 2014, Nano letters.

[5]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[6]  Yanlong Wang,et al.  Chemically driven tunable light emission of charged and neutral excitons in monolayer WS₂. , 2014, ACS nano.

[7]  D. Duong,et al.  Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. , 2014, Nanoscale.

[8]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[9]  Y. Ling,et al.  High performance field-effect transistor based on multilayer tungsten disulfide. , 2014, ACS nano.

[10]  J. Warner,et al.  Controlling sulphur precursor addition for large single crystal domains of WS2. , 2014, Nanoscale.

[11]  Jingyu Sun,et al.  Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. , 2014, ACS nano.

[12]  Satoru Suzuki,et al.  Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films , 2014 .

[13]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[14]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[15]  C. Wolden,et al.  Low-Temperature Synthesis of n-Type WS2 Thin Films via H2S Plasma Sulfurization of WO3 , 2014 .

[16]  Thomas H. Bointon,et al.  Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment , 2014, Scientific Reports.

[17]  Litao Sun,et al.  Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition , 2014 .

[18]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[19]  Misun Hong,et al.  Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. , 2014, Angewandte Chemie.

[20]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[21]  T. Yu,et al.  Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. , 2013, ACS nano.

[22]  Yu Zhang,et al.  Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. , 2013, ACS nano.

[23]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[24]  A. Neto,et al.  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[25]  Y. Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[26]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[27]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[28]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[29]  Ruitao Lv,et al.  Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. , 2013, ACS nano.

[30]  Limin Jin,et al.  Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals , 2013, Scientific Reports.

[31]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[32]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.

[33]  G. Eda,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[34]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[35]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[36]  Hongwen Zhang,et al.  Layer-controlled synthesis of WO₃ ordered nanoporous films for optimum electrochromic application. , 2013, Nanoscale.

[37]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[38]  B. Radisavljevic,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[39]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[40]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[41]  M. Cole,et al.  Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu , 2013 .

[42]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[43]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[44]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[45]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[46]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[47]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[48]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[49]  Jifa Tian,et al.  Graphene induced surface reconstruction of Cu. , 2012, Nano letters.

[50]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[51]  Q. Fu,et al.  Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum , 2012, Nature Communications.

[52]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[53]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[54]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[55]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[56]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[57]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[58]  J. Shan,et al.  Observation of tightly bound trions in monolayer MoS , 2012 .