Emergence of SARS-CoV-2 serotype(s): Is it a matter of time?

[1]  Vineet D. Menachery,et al.  SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3 , 2023, Journal of virology.

[2]  D. Montefiori,et al.  A Bivalent Omicron-Containing Booster Vaccine against Covid-19 , 2022, The New England journal of medicine.

[3]  Russell B. Corbett-Detig,et al.  Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape , 2022, Nature.

[4]  Zhijian J. Chen,et al.  An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif , 2022, Science Immunology.

[5]  L. Purcell,et al.  ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies , 2022, Science.

[6]  Peter D. Crompton,et al.  Broadly neutralizing antibodies target the coronavirus fusion peptide , 2022, Science.

[7]  Jianping Ding,et al.  Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2 , 2022, Nature Microbiology.

[8]  Y. Kakinoki,et al.  Mutations in the nonstructural proteins of SARS-CoV-2 may contribute to adverse clinical outcome in patients with COVID-19 , 2022, International Journal of Infectious Diseases.

[9]  Peter D. Crompton,et al.  Broadly neutralizing antibodies target the coronavirus fusion peptide , 2022, bioRxiv.

[10]  T. Zhou,et al.  Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2 , 2022, Cell Host & Microbe.

[11]  O. Schwartz,et al.  Towards SARS-CoV-2 serotypes? , 2022, Nature Reviews Microbiology.

[12]  H. Blum,et al.  Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern , 2022, Nature Medicine.

[13]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[14]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[15]  M. Peluso,et al.  Long-term immunologic effects of SARS-CoV-2 infection: leveraging translational research methodology to address emerging questions , 2021, Translational Research.

[16]  D. Fremont,et al.  Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD , 2021, Cell Reports.

[17]  Nan Wang,et al.  A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2 , 2020, bioRxiv.

[18]  A. Sette,et al.  The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients , 2020, Science Immunology.

[19]  M. Ciccozzi,et al.  Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant , 2020, Journal of Translational Medicine.

[20]  G. Whittaker,et al.  A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses , 2020, Viruses.

[21]  K. Maeda,et al.  Differentiation of feline coronavirus type I and II infections by virus neutralization test , 2007, Veterinary Microbiology.

[22]  Marian C. Horzinek,et al.  Feline Coronavirus Type II Strains 79-1683 and 79-1146 Originate from a Double Recombination between Feline Coronavirus Type I and Canine Coronavirus , 1998, Journal of Virology.

[23]  H. Hashimoto,et al.  Comparison of the Amino Acid Sequence and Phylogenetic Analysis of the Peplomer, Integral Membrane and Nucleocapsid Proteins of Feline, Canine and Porcine Coronaviruses , 1996, Microbiology and immunology.

[24]  T. Hohdatsu,et al.  The prevalence of types I and II feline coronavirus infections in cats. , 1992, The Journal of veterinary medical science.

[25]  T. Hohdatsu,et al.  Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 , 1991, Veterinary Microbiology.