Towards a rational design of molecular switches and sensors from their basic building blocks

[1]  J. F. Stoddart,et al.  Templated Synthesis of Interlocked Molecules , 2005 .

[2]  D. Fitzmaurice,et al.  Synthesis of tripodal [2]rotaxanes: high concentration principlet. , 2003, Chemical communications.

[3]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[4]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[5]  Yun Hee Jang,et al.  Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. , 2005, Journal of the American Chemical Society.

[6]  J F Stoddart,et al.  Molecular-based electronically switchable tunnel junction devices. , 2001, Journal of the American Chemical Society.

[7]  J. Hynes,et al.  Reactive modes in condensed phase reactions , 1981 .

[8]  Adele Dell'Erba,et al.  Anthracene-Containing [2]Rotaxanes: Synthesis, Spectroscopic, and Electrochemical Properties , 2000 .

[9]  J. F. Stoddart,et al.  Binding studies between tetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene). , 2001, The Journal of organic chemistry.

[10]  Amar H. Flood,et al.  Nanoelectronic devices from self-organized molecular switches , 2005 .

[11]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[12]  J. Fraser Stoddart,et al.  Honing up a genre of amphiphilic bistable [2]rotaxanes for device settings , 2005 .

[13]  Hsian-Rong Tseng,et al.  Toward chemically controlled nanoscale molecular machinery. , 2003, Angewandte Chemie.

[14]  R. Marcus,et al.  Dynamical effects in electron transfer reactions , 1986 .

[15]  Hsian-Rong Tseng,et al.  Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.

[16]  R. Rogers,et al.  Supramolecular networks via pyridine N-oxide CH···O hydrogen bonding in the crystal structures of 2,2′-dithiobis(pyridine N-oxide) and its complexes with 1,2,4,5-tetracyanobenzene and pyromellitic dianhydride , 1997 .

[17]  Richard A. van Delden,et al.  Controlling the Color of Cholesteric Liquid‐Crystalline Films by Photoirradiation of a Chiroptical Molecular Switch Used as Dopant , 2003 .

[18]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[19]  T. Steiner Unrolling the hydrogen bond properties of C–H···O interactions , 1997 .

[20]  James T. Hynes,et al.  The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models , 1980 .

[21]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[22]  Auke Meetsma,et al.  Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. , 2002, Journal of the American Chemical Society.

[23]  J. Fraser Stoddart,et al.  Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions , 2000 .

[24]  J. F. Stoddart,et al.  Redox-induced ring shuttling and evidence for folded structures in long and flexible two-station rotaxanes , 2003 .

[25]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[26]  François Diederich,et al.  Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding , 1990 .

[27]  Chih-Ming Ho,et al.  A nanomechanical device based on linear molecular motors , 2004 .

[28]  David J. Williams,et al.  Toward Controllable Molecular Shuttles , 1997 .

[29]  J Fraser Stoddart,et al.  Counterion-induced translational isomerism in a bistable [2]rotaxane. , 2004, Organic letters.

[30]  Hsian-Rong Tseng,et al.  Molecular shuttles based on tetrathiafulvalene units and 1,5-dioxynaphthalene ring systems. , 2004, Chemistry.

[31]  Gautam R. Desiraju,et al.  The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it? , 1991 .

[32]  E. Levillain,et al.  Synthesis of linear oligo-TTFs and their [2]rotaxanes , 2000 .

[33]  I. Willner,et al.  Au-colloid–‘molecular square’ superstructures: novel electrochemical sensing interfaces , 1999 .

[34]  A. Kaifer,et al.  Solvent effects on the binding equilibria between the guests indole and catechol and the host cyclobis(paraquat-p-phenylene) , 1995 .

[35]  G. Ercolani,et al.  "Quantitative Evaluation of Template Effect in the Formation of Cyclobis(paraquat-p-phenylene)" , 1997 .

[36]  Itamar Willner,et al.  Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. , 2004, Angewandte Chemie.

[37]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[38]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[39]  Lei Liu,et al.  Ab initio calculations on the inclusion complexation of cyclobis(paraquat-p-phenylene) , 2001 .

[40]  Chih-Ming Ho,et al.  Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates , 2004 .

[41]  J. F. Stoddart,et al.  The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.

[42]  G. Desiraju,et al.  Supramolecular Synthons and Pattern Recognition , 1998 .

[43]  David J. Williams,et al.  The complexation of tetrathiafulvalene by cyclobis(Paraquat-p-phenylene) , 1991 .

[44]  P. Stang,et al.  Templated organic synthesis , 1999 .

[45]  G. Ercolani,et al.  Template effect of tetrathiafulvalene in the formation of cyclobis(paraquat-p-phenylene). , 2005, Journal of Organic Chemistry.

[46]  William L. Jorgensen,et al.  Host–guest chemistry of rotaxanes and catenanes: application of a polarizable all-atom force field to cyclobis(paraquat-p-phenylene) complexes with disubstituted benzenes and biphenyls† , 1999 .

[47]  J Fraser Stoddart,et al.  In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes. , 2003, Chemistry.

[48]  M. Egli,et al.  The Role of Backbone Oxygen Atoms in the Organization of Nucleic Acid Tertiary Structure: Zippers, Networks, Clamps, and C‐H…︁O Hydrogen Bonds , 1997 .

[49]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[50]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[51]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[52]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[53]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[54]  J. Fraser Stoddart,et al.  Amphiphilic Bistable Rotaxanes , 2003 .

[55]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes. , 2005, Chemical communications.

[56]  Jean-Pierre Sauvage,et al.  Formation of Li+ and Cd2+ catenates, a reaction with a negative enthalpy of activation , 1992 .

[57]  F. Schmid,et al.  Diffusional barrier crossing in a two-state protein folding reaction , 1999, Nature Structural Biology.

[58]  Francesco Zerbetto,et al.  Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.

[59]  Leonid M. Goldenberg,et al.  A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .

[60]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[61]  G. Gokel,et al.  The first surface-attached catenane: self-assembly of a two-component monolayer , 1993 .

[62]  E. Krause,et al.  Pseudorotaxanes and Rotaxanes Incorporating Cycloheptatrienyl Stations − Synthesis and Co-Conformation , 2001 .

[63]  J. F. Stoddart,et al.  The magnitude of [C-H...O] hydrogen bonding in molecular and supramolecular assemblies. , 2001, Journal of the American Chemical Society.

[64]  E. Kosower The Effect of Solvent on Spectra. I. A New Empirical Measure of Solvent Polarity: Z-Values , 1958 .

[65]  David J. Williams,et al.  IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .

[66]  H. Sumi Theory on rates of solution reactions influenced by slow fluctuations in viscous solvents, and its e , 1995 .

[67]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[68]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[69]  Ashok S. Shetty,et al.  Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles , 1996 .

[70]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[71]  Hsian-Rong Tseng,et al.  Chemical synthesis gets a fillip from molecular recognition and self-assembly processes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Troisi,et al.  A quantum-mechanical description of macrocyclic ring rotation in benzylic amide. , 2001, Chemistry.

[73]  Vincenzo Balzani,et al.  Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.

[74]  C. M. Jones,et al.  The role of solvent viscosity in the dynamics of protein conformational changes. , 1992, Science.

[75]  D. Fitzmaurice,et al.  Self-assembly of a tripodal pseudorotaxane on the surface of a titanium dioxide nanoparticle. , 2003, Journal of the American Chemical Society.

[76]  J. Fraser Stoddart,et al.  Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit , 2001 .

[77]  A. Shipway,et al.  Gold-Nanoparticle/bis-Bipyridinium Cyclophane-Functionalized Ion-Sensitive Field-Effect Transistors: Novel Assemblies for Sensing of Neurotransmitters , 1999 .

[78]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[79]  Donald Fitzmaurice,et al.  The oxidation-state dependent structural conformation and supramolecular function of a redox-active [2]rotaxane in solution. , 2005, Journal of the American Chemical Society.

[80]  Itamar Willner,et al.  Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. , 2004, Journal of the American Chemical Society.

[81]  M. Zaworotko,et al.  X-Ray crystal structure of C6H3(CO2H)3-1,3,5·1.5(4,4′-bipy): a ‘super trimesic acid’ chicken-wire grid , 1996 .

[82]  Ben L Feringa,et al.  A chiroptical molecular switch with distinct chiral and photochromic entities and its application in optical switching of a cholesteric liquid crystal. , 2004, Chemistry.

[83]  I. Willner,et al.  Au-nanoparticle–bis-bipyridinium cyclophane superstructures: assembly, characterization and sensoric applications , 1999 .

[84]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[85]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[86]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[87]  J. F. Stoddart,et al.  Novel rotaxanes based on the inclusion complexation of biphenyl guests by cyclobis (paraquat-p-phenylene) , 1993 .

[88]  J. Siegel,et al.  Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: Dominance of polar/π over charge-transfer effects , 1995 .

[89]  G. M. Smith,et al.  Bis-1,3-dithiolium chloride: an unusually stable organic radical cation , 1970 .

[90]  R. A. Bissell,et al.  Synthesis and Electrochemical Properties of Redox-Active [2]Rotaxanes Based on the Inclusion Complexation of 1,4-Phenylenediamine and Benzidine by Cyclobis(paraquat-p-phenylene) , 1995 .

[91]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[92]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[93]  C. Hunter Arene—Arene Interactions: Electrostatic or Charge Transfer? , 1993 .

[94]  Douglas Philp,et al.  The Control of Translational Isomerism in Catenated Structures. , 1994 .

[95]  Itamar Willner,et al.  Magnetic field effects on cytochrome c-mediated bioelectrocatalytic transformations. , 2004, Journal of the American Chemical Society.

[96]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[97]  J. Fraser Stoddart,et al.  Switchable Catenanes and Molecular Shuttles , 2001 .

[98]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.