Iterative Decoding for Wireless Networks

The invention of turbo codes and low density parity check (LDPC) codes has made it possible for us for design error correcting codes with low decoding complexity and rates close to channel capacity. However, such codes have been studied in detail only for the most basic communication system, in which a single transmitter sends data to a single receiver over a channel whose statistics are known to both the transmitter and the receiver. Such a simplistic model is not valid in the case of a wireless network, where multiple transmitters might want to communicate with multiple receivers at the same time over a channel which can vary rapidly. While the design of efficient error correction codes for a general wireless network is an extremely hard problem, it should be possible to design such codes for several important special cases. This thesis takes a few steps in that direction. We analyze the performance of low density parity check codes under iterative decoding in certain simple networks and prove Shannon-theoretic results for more complex networks. More specifically, we analyze the iterative decoding algorithm in two very important special cases: (a) when the transmitter and receiver have no prior knowledge of the channel and (b) when the channel is a multiple access channel. We also apply iterative decoding to some non-LDPC codes on the binary symmetric channel and the additive white Gaussian noise channel. Finally, we derive capacity results for a class of wireless multicast networks and a class of fading channels.

[1]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[2]  Shu Lin,et al.  Generalized coset decoding , 1997, IEEE Trans. Commun..

[3]  Ilya Dumer,et al.  Recursive and permutation decoding for Reed-Muller codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[4]  Raymond J. Nelson Review: D. E. Muller, Application of Boolean Algebra to Switching Circuit Design and to Error Detection , 1955 .

[5]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[6]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[7]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[8]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[9]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[11]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[12]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[13]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[14]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[17]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  Shlomo Shamai,et al.  On the capacity-achieving distribution of the discrete-time non-coherent additive white Gaussian noise channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[20]  Yu Kou,et al.  On algebraic construction of Gallager low density parity check codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[21]  一松 信,et al.  R.C. Gunning and H.Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 317頁, 15×23cm, $12.50. , 1965 .

[22]  P. Maymounkov Online codes , 2002 .

[23]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[24]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[25]  Babak Hassibi,et al.  Capacity of wireless erasure networks , 2006, IEEE Transactions on Information Theory.

[26]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[27]  Kenneth Rose,et al.  A mapping approach to rate-distortion computation and analysis , 1994, IEEE Trans. Inf. Theory.

[28]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[29]  Abdelaziz Amraoui,et al.  Achieving general points in the 2-user Gaussian MAC without time-sharing or rate-splitting by means of iterative coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[30]  Farhad Hemmati,et al.  Closest coset decoding of |u|u+v| codes , 1989, IEEE J. Sel. Areas Commun..

[31]  Robert J. McEliece,et al.  Asynchronous multiple-access channel capacity , 1981, IEEE Trans. Inf. Theory.

[32]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[33]  David M. Mandelbaum,et al.  An adaptive-feedback coding scheme using incremental redundancy (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[34]  Hideki Imai,et al.  Variable threshold soft decision decoding , 1989 .

[35]  Jonathan Harel,et al.  Poset belief propagation-experimental results , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[36]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[37]  라센소렌,et al.  Multi-stage code generator and decoder for communication systems , 2002 .

[38]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[39]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[40]  H. Mattson,et al.  The mathematical theory of coding , 1976, Proceedings of the IEEE.

[41]  Jinghu Chen,et al.  Generating Code Representations Suitable for Belief Propagation Decoding , 2002 .

[42]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[43]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[44]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[45]  Shu Lin,et al.  Iterative decoding of one-step majority logic deductible codes based on belief propagation , 2000, IEEE Trans. Commun..

[46]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[47]  Ibrahim C. Abou-Faycal,et al.  The capacity of discrete-time memoryless Rayleigh-fading channels , 2001, IEEE Trans. Inf. Theory.

[48]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[49]  Bixio Rimoldi Generalized time sharing: A low-complexity capacity-achieving multiple-access technique , 2001, IEEE Trans. Inf. Theory.

[50]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[51]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[52]  Amin Shokrollahi,et al.  New Sequences of Linear Time Erasure Codes Approaching the Channel Capacity , 1999, AAECC.

[53]  H. Vincent Poor,et al.  On the Capacity-Achieving Distribution of the Noncoherent Rician Fading Channel 1 , 2003 .

[54]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[55]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[56]  Babak Hassibi,et al.  Capacity of wireless erasure networks , 2006, IEEE Transactions on Information Theory.

[57]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[58]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[59]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[60]  Yu Kou,et al.  On a class of finite geometry low density parity check codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[61]  Anne Canteaut,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length , 1998 .

[62]  Giuseppe Caire,et al.  On the Performance of Incremental Redundancy Schemes with Turbo Codes , 2002 .

[63]  George Finlay Simmons,et al.  Introduction to Topology and Modern Analysis , 1963 .

[64]  Joel G. Smith,et al.  The Information Capacity of Amplitude- and Variance-Constrained Scalar Gaussian Channels , 1971, Inf. Control..

[65]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[66]  N. Levenberg,et al.  Function theory in several complex variables , 2001 .

[67]  Ilya Dumer,et al.  Recursive decoding of Reed-Muller codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[68]  Muriel Medard,et al.  On Randomized Network Coding , 2003 .

[69]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[70]  Ilya Dumer,et al.  Near-optimum decoding for subcodes of Reed-Muller codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[71]  Martin Bossert,et al.  On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes , 1998, IEEE J. Sel. Areas Commun..

[72]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[73]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[74]  Shlomo Shamai,et al.  The capacity of average and peak-power-limited quadrature Gaussian channels , 1995, IEEE Trans. Inf. Theory.

[75]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[76]  Yu Kou,et al.  On circulant low density parity check codes , 2002, Proceedings IEEE International Symposium on Information Theory,.