A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations

In this paper, a conjugate gradient algorithm for systems of large-scale nonlinear equations is designed by the following steps: (i) A three-terms conjugate gradient direction d k is presented where the direction possesses the sufficient descent property and the trust region property independent of line search technique; (ii) A backtracking line search technique along the direction is proposed to get the step length α k and construct a point; (iii) If the point satisfies the given condition then it is the next point, otherwise the projection-proximal technique is used and get the next point. Both the direction and the line search technique are the derivative-free approaches, then the large-scale nonlinear equations are successfully solved (100,000 variables). The global convergence of the given algorithm is established under suitable conditions. Numerical results show that the proposed method is efficient for large-scale problems.

[1]  Xiwen Lu,et al.  A BFGS trust-region method for nonlinear equations , 2011, Computing.

[2]  Gonglin Yuan,et al.  Limited memory BFGS method with backtracking for symmetric nonlinear equations , 2011, Math. Comput. Model..

[3]  Xiwen Lu,et al.  BFGS trust-region method for symmetric nonlinear equations , 2009 .

[4]  Qingna Li,et al.  A class of derivative-free methods for large-scale nonlinear monotone equations , 2011 .

[5]  Ph. L. Toint Numerical solution of large sets of algebraic nonlinear equations , 1986 .

[6]  Gonglin Yuan,et al.  Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..

[7]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[8]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[9]  Dong-Hui Li,et al.  Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations , 2002, SIAM J. Numer. Anal..

[10]  Guoyin Li,et al.  A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs , 2014, J. Comput. Appl. Math..

[11]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[12]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[13]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[14]  Gonglin Yuan,et al.  A Modified Hestenes-Stiefel Conjugate Gradient Algorithm for Large-Scale Optimization , 2013 .

[15]  M. Solodov,et al.  A hybrid projection-proximal point algorithm. , 1998 .

[16]  Chuanwei Wang,et al.  A projection method for a system of nonlinear monotone equations with convex constraints , 2007, Math. Methods Oper. Res..

[17]  Weijun Zhou,et al.  Spectral gradient projection method for solving nonlinear monotone equations , 2006 .

[18]  Yang Bing,et al.  AN EFFICIENT IMPLEMENTATION OF MERRILL'S METHOD FOR SPARSE OR PARTIALLY SEPARABLE SYSTEMS OF NONLINEAR EQUATIONS* , 1991 .

[19]  Weijun Zhou,et al.  A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .

[20]  Natasa Krejic,et al.  Practical Quasi-Newton algorithms for singular nonlinear systems , 2010, Numerical Algorithms.

[21]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[22]  Boris Polyak The conjugate gradient method in extreme problems , 2015 .

[23]  Marcos Raydan,et al.  Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems , 2003, Optim. Methods Softw..

[24]  Gonglin Yuan,et al.  A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems , 2014 .

[25]  Duan Li,et al.  Monotonicity of Fixed Point and Normal Mappings Associated with Variational Inequality and Its Application , 2000, SIAM J. Optim..

[26]  Yong Wang,et al.  A new trust region method for nonlinear equations , 2003, Math. Methods Oper. Res..

[27]  Wanyou Cheng,et al.  A PRP type method for systems of monotone equations , 2009, Math. Comput. Model..

[28]  Neculai Andrei,et al.  Another hybrid conjugate gradient algorithm for unconstrained optimization , 2008, Numerical Algorithms.

[29]  Marco Sciandrone,et al.  A Truncated Nonmonotone Gauss-Newton Method for Large-Scale Nonlinear Least-Squares Problems , 2006, Comput. Optim. Appl..

[30]  Yunhai Xiao,et al.  Spectral gradient projection method for monotone nonlinear equations with convex constraints , 2009 .

[31]  Luigi Grippo,et al.  Nonmonotone derivative-free methods for nonlinear equations , 2007, Comput. Optim. Appl..

[32]  Ya-Xiang Yuan,et al.  Subspace methods for large scale nonlinear equations and nonlinear least squares , 2009 .

[33]  Mikhail V. Solodov,et al.  A Globally Convergent Inexact Newton Method for Systems of Monotone Equations , 1998 .

[34]  M. Fukushima,et al.  Erratum to Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints , 2005 .

[35]  C. Kanzow Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties , 2004 .

[36]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[37]  Gonglin Yuan,et al.  A BFGS algorithm for solving symmetric nonlinear equations , 2013 .

[38]  Xiwen Lu,et al.  A new backtracking inexact BFGS method for symmetric nonlinear equations , 2008, Comput. Math. Appl..

[39]  Robert B. Schnabel,et al.  Tensor methods for large sparse systems of nonlinear equations , 1996 .

[40]  Dong-Hui Li,et al.  A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinearequations , 2011 .

[41]  S. M. Roberts,et al.  On the closed form solution of Troesch's problem , 1976 .

[42]  Liqun Qi,et al.  On the Convergence of a Trust-Region Method for Solving Constrained Nonlinear Equations with Degenerate Solutions , 2004 .

[43]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[44]  José Mario Martínez,et al.  Comparing Algorithms for Solving Sparse Nonlinear Systems of Equations , 1992, SIAM J. Sci. Comput..

[45]  Wufan Chen,et al.  Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization , 2008, Optim. Methods Softw..