Rubredoxins Involved in Alkane Oxidation
暂无分享,去创建一个
Martin Neuenschwander | B. Witholt | J. B. van Beilen | M. Neuenschwander | Bernard Witholt | Jan B. van Beilen | C. Roth | Theo H. M. Smits | Christian Roth | Stefanie B. Balada | T. H. Smits | Stefanie B Balada
[1] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .
[2] J. B. Beilen. Alkane oxidation by Pseudomonas oleovorans : genes and proteins , 1994 .
[3] J. Brosius,et al. "ATG vectors' for regulated high-level expression of cloned genes in Escherichia coli. , 1985, Gene.
[4] J. Kingma,et al. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. , 1990, Trends in biotechnology.
[5] M. J. Coon,et al. Enzymatic -oxidation. VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. , 1972, The Journal of biological chemistry.
[6] C. Yanisch-Perron,et al. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.
[7] N. Scrutton,et al. Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. , 1997, The Biochemical journal.
[8] B. Witholt,et al. Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria , 2002, Journal of bacteriology.
[9] M C Peitsch,et al. Protein structure computing in the genomic era. , 2000, Research in microbiology.
[10] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[11] S. Panke,et al. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. , 2001, Microbiology.
[12] K. Timmis,et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. , 1998, International journal of systematic bacteriology.
[13] M. J. Coon,et al. Evolutionary and phylogenetic relationships of rubredoxin-containing microbes. , 1971, Biochemical and biophysical research communications.
[14] J. Shapiro,et al. Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations , 1977, Journal of Bacteriology.
[15] J. Sambrook,et al. Molecular Cloning: A Laboratory Manual , 2001 .
[16] R. Schwartz,et al. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. , 1973, Applied microbiology.
[17] B. Fox,et al. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. , 1994, Biochemistry.
[18] W. J. Dower,et al. High efficiency transformation of E. coli by high voltage electroporation , 1988, Nucleic Acids Res..
[19] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.
[20] B. Fox,et al. Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[21] N. Scrutton,et al. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. , 2001, The Biochemical journal.
[22] B. Witholt,et al. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. , 1999, Environmental microbiology.
[23] E. Juni,et al. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum) , 1969, Journal of bacteriology.
[24] B. Witholt,et al. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. , 2000, European journal of biochemistry.
[25] T. Ichiye,et al. Structural origins of redox potentials in Fe-S proteins: electrostatic potentials of crystal structures. , 1996, Biophysical journal.
[26] M. J. Coon,et al. Enzymatic ω-Oxidation III. PURIFICATION AND PROPERTIES OF RUBREDOXIN, A COMPONENT OF THE ω-HYDROXYLATION SYSTEM OF PSEUDOMONAS OLEOVORANS , 1968 .
[27] M. Maher,et al. Rubredoxin from Clostridium pasteurianum. Structures of G10A, G43A and G10VG43A mutant proteins. Mutation of conserved glycine 10 to valine causes the 9-10 peptide link to invert. , 1999, Acta crystallographica. Section D, Biological crystallography.
[28] J. Gaillard,et al. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties. , 1997, Biochemistry.
[29] G. Huisman,et al. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates , 1988, Applied and environmental microbiology.
[30] B. Witholt,et al. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. , 1992, The Journal of biological chemistry.
[31] M. J. Coon,et al. Enzymatic ω-Oxidation I. ELECTRON CARRIERS IN FATTY ACID AND HYDROCARBON HYDROXYLATION , 1966 .
[32] M. Wubbolts,et al. Genetics of alkane oxidation byPseudomonas oleovorans , 1994, Biodegradation.
[33] T. Kunkel. Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[34] J. Kingma,et al. The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. , 1989, The Journal of biological chemistry.
[35] N. Scrutton,et al. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. , 1998, Biochemistry.
[36] M. Bagby,et al. Microbial oxidation of cumene by octane-grown cells , 1994, Applied Microbiology and Biotechnology.
[37] T. Ichiye,et al. Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole. , 1999, Biochemistry.
[38] M. J. Coon,et al. Enzymatic ω-Oxidation II. FUNCTION OF RUBREDOXIN AS THE ELECTRON CARRIER IN ω-HYDROXYLATION , 1967 .
[39] W. Hillen,et al. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1. , 1995, Microbiology.
[40] D. Arp,et al. Two Distinct Monooxygenases for Alkane Oxidation inNocardioides sp. Strain CF8 , 2001, Applied and Environmental Microbiology.
[41] B. Barrell,et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.
[42] M. Seeger,et al. New alkane-responsive expression vectors for Escherichia coli and pseudomonas. , 2001, Plasmid.
[43] B. Witholt,et al. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. , 1987, The Journal of biological chemistry.
[44] M. J. Coon,et al. Enzymatic ω-Oxidation IV. PURIFICATION AND PROPERTIES OF THE ω-HYDROXYLASE OF PSEUDOMONAS OLEOVORANS , 1970 .
[45] I. Nagy,et al. Applied aspects of Rhodococcus genetics , 2004, Antonie van Leeuwenhoek.
[46] M. J. Coon,et al. Enzymatic ω-Oxidation V. FORMS OF PSEUDOMONAS OLEOVORANS RUBREDOXIN CONTAINING ONE OR TWO IRON ATOMS: STRUCTURE AND FUNCTION IN ω-HYDROXYLATION , 1971 .