Endomesoderm specification in Caenorhabditis elegans and other nematodes

The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell‐fate‐specification pathways. This GRN contains both cell‐autonomous and cell non‐autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity. BioEssays 28: 1010–1022, 2006. © 2006 Wiley Periodicals, Inc.

[1]  T. Blackwell,et al.  SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. , 2003, Genes & development.

[2]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[3]  M. Krause,et al.  The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos , 2005, Development.

[4]  P. Okkema,et al.  An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. , 2004, Developmental biology.

[5]  C. Hunter,et al.  Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos , 1996, Cell.

[6]  Ryutaro Murakami,et al.  GATA factors as key regulatory molecules in the development of Drosophila endoderm , 2005, Development, growth & differentiation.

[7]  J. McGhee,et al.  pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx. , 1998, Development.

[8]  Hideyuki Okano,et al.  WRM-1 Activates the LIT-1 Protein Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans , 1999, Cell.

[9]  E. Davidson,et al.  Gene regulatory network controlling embryonic specification in the sea urchin. , 2004, Current opinion in genetics & development.

[10]  J. Kimble,et al.  The C. elegans Hand gene controls embryogenesis and early gonadogenesis , 2003, Development.

[11]  R. Sommer As good as they get: cells in nematode vulva development and evolution. , 2001, Current opinion in cell biology.

[12]  R. Lin,et al.  Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos. , 2004, Developmental biology.

[13]  Morris F. Maduro,et al.  Genetic redundancy in endoderm specification within the genus Caenorhabditis. , 2005, Developmental biology.

[14]  Morris F. Maduro,et al.  Med-type GATA factors and the evolution of mesendoderm specification in nematodes. , 2006, Developmental biology.

[15]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[16]  Morris F. Maduro,et al.  A POP‐1 repressor complex restricts inappropriate cell type‐specific gene transcription during Caenorhabditis elegans embryogenesis , 2001, The EMBO journal.

[17]  E. Schierenberg,et al.  Regulative development in a nematode embryo: a hierarchy of cell fate transformations. , 1999, Developmental biology.

[18]  R. Ellis,et al.  A phylogeny of caenorhabditis reveals frequent loss of introns during nematode evolution. , 2004, Genome research.

[19]  Hendrik C Korswagen,et al.  Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  Morris F. Maduro,et al.  Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. , 2002, Developmental biology.

[21]  R. Lin,et al.  POP-1 and Anterior–Posterior Fate Decisions in C. elegans Embryos , 1998, Cell.

[22]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[23]  Morris F. Maduro,et al.  The Wnt effector POP-1 and the PAL-1/Caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development. , 2005, Developmental biology.

[24]  R. Lin,et al.  C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. , 2005, Developmental biology.

[25]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[26]  G. Swiers,et al.  Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. , 2006, Developmental biology.

[27]  J. Nance,et al.  PAR proteins and the establishment of cell polarity during C. elegans development , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Stuart K. Kim,et al.  Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans , 2005, Development.

[29]  Christopher J. Thorpe,et al.  MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans , 1999, Nature.

[30]  M. Frasch,et al.  The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila , 2005, Development.

[31]  W. Wood,et al.  Gastrulation initiation in Caenorhabditis elegans requires the function of gad-1, which encodes a protein with WD repeats. , 1998, Developmental biology.

[32]  J. McGhee,et al.  Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. , 1998, Genes & development.

[33]  T. Hall,et al.  Multiple modes of RNA recognition by zinc finger proteins. , 2005, Current opinion in structural biology.

[34]  Eric H Davidson,et al.  The last common bilaterian ancestor. , 2002, Development.

[35]  J. Priess,et al.  Establishment of POP-1 asymmetry in early C. elegans embryos , 2003, Development.

[36]  Bruce Bowerman,et al.  skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo , 1992, Cell.

[37]  Morris F. Maduro,et al.  Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. , 2001, Molecular cell.

[38]  Morris F. Maduro,et al.  The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm. , 2005, Developmental cell.

[39]  Bruce Bowerman,et al.  The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos , 1993, Cell.

[40]  J. Kimble,et al.  Conservation of glp-1 regulation and function in nematodes. , 2001, Genetics.

[41]  M. L. Howard,et al.  cis-Regulatory control circuits in development. , 2004, Developmental biology.

[42]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[43]  R. Lin,et al.  pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos , 1995, Cell.

[44]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[45]  D. Stainier,et al.  Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Y. van de Peer,et al.  Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences. , 1994, Molecular phylogenetics and evolution.

[47]  A. Fire,et al.  The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. , 1994, Development.

[48]  Morris F. Maduro,et al.  Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. , 2002, Developmental biology.

[49]  R. Patient,et al.  Mesendoderm An Ancient Germ Layer? , 2001, Cell.

[50]  Eric H Davidson,et al.  Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. , 2002, Developmental biology.

[51]  J. McGhee,et al.  The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. , 1998, Developmental biology.

[52]  R. J. Hill,et al.  The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in C. elegans embryos , 2004, Development.

[53]  A. Fire,et al.  Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. , 1994, Development.

[54]  D. Pilgrim,et al.  Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. , 2006, Developmental cell.

[55]  B. Bowerman,et al.  The maternal gene spn-4 encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in early C. elegans embryos. , 2001, Development.

[56]  J. Smith,et al.  Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. , 1999, Development.

[57]  Ning Chen,et al.  The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. , 2004, Developmental cell.

[58]  Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[59]  E. Schierenberg,et al.  Differences in maternal supply and early development of closely related nematode species. , 2004, The International journal of developmental biology.

[60]  Morris F. Maduro,et al.  Specification of the C. elegans MS blastomere by the T-box factor TBX-35 , 2006, Development.

[61]  J. McGhee,et al.  elt-2, a Second GATA Factor from the Nematode Caenorhabditis elegans(*) , 1995, The Journal of Biological Chemistry.

[62]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[63]  R. Hawkins,et al.  Biochemical Discrimination between Luminal and Abluminal Enzyme and Transport Activities of the Blood-Brain Barrier (*) , 1995, The Journal of Biological Chemistry.

[64]  Makedonka Mitreva,et al.  Comparative genomics of nematodes. , 2005, Trends in genetics : TIG.

[65]  C. Mello,et al.  SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. , 2002, Developmental cell.

[66]  D. Stainier,et al.  Gata5 is required for the development of the heart and endoderm in zebrafish. , 1999, Genes & development.

[67]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[68]  Harold Weintraub,et al.  The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos , 1992, Cell.

[69]  J. McGhee,et al.  Reevaluation of the Role of the med-1 and med-2 Genes in Specifying the Caenorhabditis elegans Endoderm , 2005, Genetics.

[70]  M. Labouesse,et al.  Patterning the C. elegans embryo: moving beyond the cell lineage. , 1999, Trends in genetics : TIG.

[71]  Morris F. Maduro,et al.  Maternal deployment of the embryonic SKN-1-->MED-1,2 cell specification pathway in C. elegans. , 2007, Developmental biology.

[72]  S. Mango,et al.  CYK-4/GAP Provides a Localized Cue to Initiate Anteroposterior Polarity upon Fertilization , 2006, Science.

[73]  J. McGhee,et al.  The evolutionary duplication and probable demise of an endodermal GATA factor in Caenorhabditis elegans. , 2003, Genetics.

[74]  A. Woollard,et al.  The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. , 2006, Developmental biology.

[75]  M. Senchuk,et al.  Cloning and expression analysis of pos‐1 in the nematodes Caenorhabditis briggsae and Caenorhabditis remanei , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[76]  William R. Atchley,et al.  Molecular Evolution of the GATA Family of Transcription Factors: Conservation Within the DNA-Binding Domain , 2000, Journal of Molecular Evolution.

[77]  Steven N. Hird,et al.  Specification of the anteroposterior axis in Caenorhabditis elegans. , 1996, Development.

[78]  D. Slonim,et al.  Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome , 2003, Development.

[79]  S. Mango,et al.  Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4 , 2002, Science.

[80]  A. Fire,et al.  Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. , 1993, Genetics.

[81]  R. Shivdasani,et al.  Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Buckingham Skeletal muscle formation in vertebrates. , 2001, Current opinion in genetics & development.

[83]  B. Bowerman,et al.  Cell polarity in the early Caenorhabditis elegans embryo. , 1999, Current opinion in genetics & development.

[84]  G. Seydoux,et al.  Genetic requirements for PIE-1 localization and inhibition of gene expression in the embryonic germ lineage of Caenorhabditis elegans. , 1998, Developmental biology.

[85]  J. Priess,et al.  Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. , 1994, Science.

[86]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[87]  J. Priess,et al.  The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. , 1997, Development.

[88]  A. Fire,et al.  The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. , 1994, Development.

[89]  K. Futai,et al.  Early embryogenesis of the pinewood nematode Bursaphelenchus xylophilus , 2004, Development, growth & differentiation.

[90]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[91]  S. Mango,et al.  Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo. , 1994, Development.

[92]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[93]  J. McGhee,et al.  Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. , 2005, Developmental biology.

[94]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[95]  Kunihiro Matsumoto,et al.  Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[96]  R. Roy,et al.  Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. , 2002, Development.

[97]  A. Coomans,et al.  Embryonic cell lineage of the marine nematode Pellioditis marina. , 2003, Developmental biology.

[98]  Y. Kohara,et al.  Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans , 2003, Development.

[99]  Donna K Slonim,et al.  The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo , 2005, Development.

[100]  Marie-Anne Félix,et al.  Evolvability of cell specification mechanisms. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[101]  C. Mello,et al.  pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. , 1999, Development.

[102]  J. Gilleard,et al.  Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. , 2004, Molecular and biochemical parasitology.

[103]  James D. McGhee,et al.  Coordination of ges-1 expression between the Caenorhabditis pharynx and intestine. , 2001, Developmental biology.

[104]  B. Goldstein Induction of gut in Caenorhabditis elegans embryos , 1992, Nature.