Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data

Copyright © 2015 by ASME. In this paper, we combine recent developments in modeling of fatigue-damage, isogeometric analysis (IGA) of thin-shell structures, and structural health monitoring (SHM) to develop a computational steering framework for fatigue-damage prediction in full-scale laminated composite structures. The main constituents of the proposed framework are described in detail, and the framework is deployed in the context of an actual fatigue test of a full-scale wind-turbine blade structure. The results indicate that using an advanced computational model informed by in situ SHM data leads to accurate prediction of the damage zone formation, damage progression, and eventual failure of the structure. Although the blade fatigue simulation was driven by test data obtained prior to the computation, the proposed computational steering framework may be deployed concurrently with structures undergoing fatigue loading.

[1]  Sandia Report,et al.  Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100 , 2007 .

[2]  W. Van Paepegem,et al.  Simulating in-plane fatigue damage in woven glass fibre-reinforced composites subject to fully reversed cyclic loading , 2004 .

[3]  Frederica Darema,et al.  Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements , 2004, International Conference on Computational Science.

[4]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[5]  Wim Van Paepegem,et al.  Fatigue damage modeling of fibre-reinforced composite materials: Review , 2001 .

[6]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[7]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[8]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[9]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[10]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[11]  Somnath Ghosh,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part II - With Interfacial Debonding , 2006 .

[12]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[13]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[14]  S. Li,et al.  Two scale response and damage modeling of composite materials , 2004 .

[15]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[16]  W. Van Paepegem,et al.  A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites , 2002 .

[17]  Yuri Bazilevs,et al.  Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data , 2012, ICCS.

[18]  Jt Fong,et al.  What Is Fatigue Damage , 1982 .

[19]  A. Korobenko,et al.  Isogeometric analysis of continuum damage in rotation-free composite shells , 2015 .

[20]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[21]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[22]  Francesco Lanza di Scalea,et al.  Passive-only damage detection by reciprocity of Green’s functions reconstructed from diffuse acoustic fields with application to wind turbine blades , 2015 .

[23]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[24]  J D Tippmann,et al.  Application of damage detection methods using passive reconstruction of impulse response functions , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Yuri Bazilevs,et al.  A computational procedure for prebending of wind turbine blades , 2012 .

[26]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[27]  G. Sendeckyj,et al.  Life Prediction for Resin-Matrix Composite Materials , 1991 .

[28]  Michael D. Todd,et al.  Wind turbine blade fatigue tests: lessons learned and application to SHM system development , 2012 .

[29]  Gyuhae Park,et al.  Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[30]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[31]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[32]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[33]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[34]  Jose R. Zayas,et al.  3X-100 Blade Field Test , 2008 .

[35]  Roger Ohayon,et al.  Reduced models for modal analysis of fluid-structure systems taking into account compressibility and gravity effects , 2006 .

[36]  Francesco Lanza di Scalea,et al.  Experiments on a wind turbine blade testing an indication for damage using the causal and anti-causal Green's function reconstructed from a diffuse field , 2014, Smart Structures.

[37]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[38]  Gyuhae Park,et al.  Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[39]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[40]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[41]  Isaac M Daniel,et al.  Engineering Mechanics of Composite Materials , 1994 .

[42]  Gyuhae Park,et al.  Fatigue crack detection performance comparison in a composite wind turbine rotor blade , 2013 .