Cluster analysis of planetary remote sensing spectral data

[1] In this work, an innovative approach for remote sensing data analysis is presented. A statistical multivariate approach, applied to spectroscopic data, is able to reduce and explore the large amount of data collected during planetary missions. The multivariate statistical approach implemented is a cluster analysis method together with a criterium able to identify the natural number of clusters present in the spectral data set. An evaluation of the statistical analysis methods has been developed, implemented, and applied to analyze Mars thermal emission data. We find the statistical approach readily identifies spurious data. The resulting number of clusters provides ≥105 reduction in data volume. This allows a focusing of scientific interest onto a limited number of statistically significant groups. A comparison of the results of the statistical approach to previous expert analysis of Mars thermal emission data, for the Sinus Meridiani region where a hematite-rich area of Mars has been previously detected, is provided. We find that several of the clusters reproduce the results of the expert analyses of the Sinus Meridiani hematite distribution. The current approach has the additional advantage of eliminating the time-consuming techniques of atmospheric correction, when surface features are to be investigated.

[1]  Kenneth S. Edgett,et al.  Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani , 1997 .

[2]  H. P. Friedman,et al.  On Some Invariant Criteria for Grouping Data , 1967 .

[3]  R. L. Thorndike Who belongs in the family? , 1953 .

[4]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[5]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[6]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[7]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[8]  M. Malin,et al.  Mars Observer camera , 1992 .

[9]  P. N. Pathak Empirical Analysis of Passive Microwave Observations from Bbaskara-II SAMIR and Remote Sensing of Atmospheric Water Vapor and Liquid Water , 1987 .

[10]  A. Baldridge,et al.  Thermal Emission Spectrometer hyperspectral analyses of proposed paleolake basins on Mars: No evidence for in‐place carbonates , 2005 .

[11]  Thomas R. Loveland,et al.  Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data , 1997 .

[12]  Brian Everitt,et al.  Cluster analysis , 1974 .

[13]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[14]  Floriana Esposito,et al.  PFS: the Planetary Fourier Spectrometer for Mars Express , 2004 .

[15]  Giuseppe A. Marzo,et al.  Measurements of spectral emissivity related to planetary missions , 2002 .

[16]  Victor R. Baker,et al.  Channels and valleys on Mars , 1983 .

[17]  Erzsébet Merényi,et al.  Deucalionis Regio, Mars: Evidence for a New Type of Immobile Weathered Soil Unit , 1996 .

[18]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[19]  Virginia C. Gulick,et al.  Channels and valley networks. , 1992 .

[20]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[21]  Jeffrey S. Miller,et al.  Mapping of Spectral Variations on the Surface of Mars from High Spectral Resolution Telescopic Images , 1996 .

[22]  J. A. Gengerelli A method for detecting subgroups in a population and specifying their membership. , 1963, The Journal of psychology.

[23]  V. Giraud,et al.  Large-Scale Analysis of Cirrus Clouds from AVHRR Data: Assessment of Both a Microphysical Index and the Cloud-Top Temperature , 1997 .

[24]  D. N. Sparks Euclidean Cluster Analysis , 1973 .

[25]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[26]  Erzsébet Merényi,et al.  Classification of asteroid spectra using a neural network , 1994 .

[27]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[28]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[29]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[30]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[31]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[32]  Patrick L. Thompson,et al.  CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter) , 2004, SPIE Asia-Pacific Remote Sensing.

[33]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .