Distance-constrained labellings of Cartesian products of graphs

An $L(h_1, h_2, \ldots, h_l)$-labelling of a graph $G$ is a mapping $\phi: V(G) \rightarrow \{0, 1, 2, \ldots\}$ such that for $1\le i\le l$ and each pair of vertices $u, v$ of $G$ at distance $i$, we have $|\phi(u) - \phi(v)| \geq h_i$. The span of $\phi$ is the difference between the largest and smallest labels assigned to the vertices of $G$ by $\phi$, and $\lambda_{h_1, h_2, \ldots, h_l}(G)$ is defined as the minimum span over all $L(h_1, h_2, \ldots, h_l)$-labellings of $G$. In this paper we study $\lambda_{h, 1, \ldots, 1}$ for Cartesian products of graphs. We prove that, if $G_1, \ldots, G_{l-1}$ and $G$ are non-trivial graphs with orders $q_1, \ldots, q_{l-1}$ and $q$, respectively, such that $q_1 q_2 \ldots q_{l-1} > 3(\min\{q_1, \ldots, q_{l-1}\}+1)q$ and $H = G_1 \Box \cdots \Box G_{l-1} \Box G$ contains a subgraph $K$ with order $q_1 q_2 \ldots q_{l}$ and diameter at most $l\ge 2$ then, for every integer $1 \le h \le q_{l}\le q$, $\lambda_{h, 1, \ldots, 1}(H)$ as well as three related invariants for $H$ all take the value $q_1 q_2 \ldots q_{l} - 1$. In particular the chromatic number of the $l$-th power of $H$ is equal to $q_1 q_2 \ldots q_{l}$, where $(h,1,\ldots,1)$ is of dimension $l$. We prove further that, under the same condition, these four invariants take the same value on any subgraph $G$ of $H$ which contains $K$ and the chromatic number of the $l$-th power of $G$ is equal to $q_1 q_2 \ldots q_{l}$. All these results apply in particular to the class of Hamming graphs.

[1]  Jan van den Heuvel,et al.  Graph labeling and radio channel assignment , 1998, J. Graph Theory.

[2]  Denise Sakai Troxell Labeling Chordal Graphs: Distance Two Condition , 1994, SIAM Journal on Discrete Mathematics.

[3]  A. Gamst,et al.  Homogeneous distribution of frequencies in a regular hexagonal cell system , 1982, IEEE Transactions on Vehicular Technology.

[4]  Jirí Fiala,et al.  Distance three labelings of trees , 2012, Discret. Appl. Math..

[5]  Fred S. Roberts No-hole 2-distant colorings , 1993 .

[6]  Sanming Zhou A distance-labelling problem for hypercubes , 2008, Discret. Appl. Math..

[7]  Sanming Zhou,et al.  Labelling Cayley Graphs on Abelian Groups , 2005, SIAM J. Discret. Math..

[8]  Panos M. Pardalos,et al.  A coloring problem on the n-cube , 2000, Discret. Appl. Math..

[9]  Daphne Der-Fen Liu Hamiltonicity and circular distance two labellings , 2001, Discret. Math..

[10]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[11]  Sanming Zhou,et al.  Distance-two labellings of Hamming graphs , 2009, Discret. Appl. Math..

[12]  John P. Georges,et al.  Labeling Products of Complete Graphs with a Condition at Distance Two , 2001, SIAM J. Discret. Math..

[13]  Yang Li,et al.  Linear and cyclic distance-three labellings of trees , 2013, Discret. Appl. Math..

[14]  Bruce A. Reed,et al.  Griggs and Yeh's Conjecture and L(p, 1)-labelings , 2012, SIAM J. Discret. Math..

[15]  Denise Sakai Troxell No-hole k-tuple (r+1)-distant Colorings , 1996, Discret. Appl. Math..

[16]  Sanming Zhou Distance Labelling Problems for Hypercubes and Hamming Graphs - A Survey , 2007, Electron. Notes Discret. Math..

[17]  John P. Georges,et al.  On the lambda-Number of Qn and Related Graphs , 1995, SIAM J. Discret. Math..

[18]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: An Updated Survey and Annotated Bibliography , 2011, Comput. J..

[19]  Denise Sakai,et al.  Labeling Chordal Graphs: Distance Two Condition , 1994 .

[20]  Jeong-Hyun Kang,et al.  L(2, 1)-Labeling of Hamiltonian graphs with Maximum Degree 3 , 2008, SIAM J. Discret. Math..

[21]  Sanming Zhou,et al.  No-hole 2-distant colorings for Cayley graphs on finitely generated abelian groups , 2007, Discret. Math..

[22]  Richard B. Tan,et al.  L(h, 1, 1)-labeling of outerplanar graphs , 2006, Math. Methods Oper. Res..

[23]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[24]  Chi Wang,et al.  No-hole (r+1)-distant colorings , 1993, Discret. Math..

[25]  Florica Kramer,et al.  A survey on the distance-colouring of graphs , 2008, Discret. Math..

[26]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[27]  Richard B. Tan,et al.  L(h, 1, 1)-Labeling of Outerplanar Graphs , 2006, SIROCCO.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Sanming Zhou,et al.  The L(h, 1, 1)-labelling problem for trees , 2010, Eur. J. Comb..

[30]  Wensong Lin,et al.  Distance two labelings of Cartesian products of complete graphs , 2012, Ars Comb..